FahadAlam commited on
Commit
9a958a9
·
1 Parent(s): 3727078

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -12
app.py CHANGED
@@ -1,17 +1,18 @@
1
- import gradio as gr
2
- from transformers import pipeline
3
 
4
- classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
 
 
5
 
6
- def zeroShotClassification(text_input, candidate_labels):
7
- labels = [label.strip(' ') for label in candidate_labels.split(',')]
8
- output = {}
9
- prediction = classifier(text_input, labels)
10
- for i in range(len(prediction['labels'])):
11
- output[prediction['labels'][i]] = prediction['scores'][i]
12
- return output
13
 
14
- examples = [["One day I will see the world", "travel, live, die, future"]]
15
 
16
- demo = gr.Interface(fn=zeroShotClassification, inputs=["text", "text"], outputs="label", title="Text Classification", examples=examples)
 
 
17
  demo.launch()
 
1
+ import wikipedia
 
2
 
3
+ def wikipediaScrap(article_name, wikipedia_language = "en"):
4
+ if wikipedia_language:
5
+ wikipedia.set_lang(wikipedia_language)
6
 
7
+ et_page = wikipedia.page(wikipedia_article)
8
+ title = et_page.title
9
+ content = et_page.content
10
+ page_url = et_page.url
11
+ linked_pages = et_page.links
 
 
12
 
13
+ return title, page_url, content, "\n". join(linked_pages)
14
 
15
+ examples = [["Eiffel Tower", "en"], ["Eiffel tower", 'ur']]
16
+
17
+ demo = gr.Interface(fn=wikipediaScrap, inputs=["text", "text"], outputs=["text", "text", "text", "text"], title="Wikipedia Scrap", examples=examples)
18
  demo.launch()