Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,15 +1,38 @@
|
|
1 |
from fastapi import FastAPI
|
2 |
from pydantic import BaseModel
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
4 |
import torch
|
5 |
|
6 |
# Load model and tokenizer
|
7 |
-
MODEL_NAME = "meta-llama/Llama-3.2-1B" # Replace with your model
|
8 |
|
9 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
10 |
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch.float16)
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
def generate_response(prompt: str):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
inputs = tokenizer(prompt, return_tensors="pt")
|
14 |
outputs = model.generate(**inputs, max_length=200)
|
15 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
1 |
from fastapi import FastAPI
|
2 |
from pydantic import BaseModel
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
+
from datasets import load_dataset
|
5 |
import torch
|
6 |
|
7 |
# Load model and tokenizer
|
8 |
+
MODEL_NAME = "meta-llama/Llama-3.2-1B" # Replace with your fine-tuned model
|
9 |
|
10 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
11 |
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch.float16)
|
12 |
|
13 |
+
# Load AWS-Bot dataset
|
14 |
+
DATASET_NAME = "Faizal2805/cyberbot" # Replace with your dataset
|
15 |
+
dataset = load_dataset(DATASET_NAME, split="train")
|
16 |
+
|
17 |
+
def get_dataset_response(prompt: str):
|
18 |
+
"""
|
19 |
+
Check if the user's input matches a dataset entry and return a predefined response.
|
20 |
+
If no match is found, return None.
|
21 |
+
"""
|
22 |
+
for example in dataset:
|
23 |
+
if example["text"].startswith(f"<s>[INST] {prompt} [/INST]"):
|
24 |
+
return example["text"].split("</s>")[-1].strip()
|
25 |
+
return None
|
26 |
+
|
27 |
def generate_response(prompt: str):
|
28 |
+
"""
|
29 |
+
Generate a response from the dataset if available; otherwise, use the model.
|
30 |
+
"""
|
31 |
+
dataset_response = get_dataset_response(prompt)
|
32 |
+
if dataset_response:
|
33 |
+
return dataset_response # Return predefined dataset response
|
34 |
+
|
35 |
+
# Fallback to model-based response
|
36 |
inputs = tokenizer(prompt, return_tensors="pt")
|
37 |
outputs = model.generate(**inputs, max_length=200)
|
38 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|