Spaces:
Running
Running
File size: 5,016 Bytes
fdd2607 ad8a314 0b103dc ad8a314 0b103dc ad8a314 301f745 ad8a314 0b103dc ad8a314 0b103dc 301f745 0b103dc ad8a314 0b103dc ad8a314 0b103dc ad8a314 0b103dc ad8a314 0b103dc ad8a314 0b103dc ad8a314 301f745 ad8a314 0b103dc ad8a314 0b103dc ea92c48 ad8a314 ea92c48 0b103dc ad8a314 0b103dc ea92c48 0b103dc c79c478 ad8a314 c79c478 0b103dc ad8a314 0b103dc 301f745 ad8a314 0b103dc ea92c48 ad8a314 ea92c48 0b103dc ea92c48 ad8a314 0b103dc ea92c48 0b103dc ea92c48 0b103dc ea92c48 ad8a314 ea92c48 0b103dc ea92c48 0b103dc ea92c48 0b103dc ea92c48 0b103dc ea92c48 ad8a314 ea92c48 ad8a314 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
import gradio as gr
from huggingface_hub import InferenceClient
# Initialize Hugging Face Inference Client
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
# Response Function (Now Compatible with 'type=messages')
def respond(
message,
history,
system_message,
max_tokens,
temperature,
top_p,
):
# Correct message format for Gradio's 'messages' type
messages = [{"role": "system", "content": system_message}]
# Handle both old tuple format and new 'messages' format
for entry in history:
if isinstance(entry, dict) and "role" in entry and "content" in entry:
messages.append(entry) # Already in correct format
elif isinstance(entry, tuple) and len(entry) == 2:
messages.append({"role": "user", "content": entry[0]})
messages.append({"role": "assistant", "content": entry[1]})
# Add the current user message
messages.append({"role": "user", "content": message})
# Initialize response string
response = ""
# Generate chat response using the client
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
# Gradio Interface Setup
demo = gr.ChatInterface(
respond,
chatbot=gr.Chatbot(type="messages"),
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
],
)
# Launch the Gradio app
if __name__ == "__main__":
demo.launch()
# Fine-Tuning GPT-2 on Hugging Face Spaces (Streaming 40GB Dataset, No Storage Issues)
from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments
from datasets import load_dataset
from peft import LoraConfig, get_peft_model
import torch
# Authenticate Hugging Face
from huggingface_hub import notebook_login
notebook_login()
# Load GPT-2 model and tokenizer
model_name = "gpt2"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Custom Dataset (Predefined Q&A Pairs for Project Expo)
custom_data = [
{"prompt": "Who are you?", "response": "I am Eva, a virtual voice assistant."},
{"prompt": "What is your name?", "response": "I am Eva, how can I help you?"},
{"prompt": "What can you do?", "response": "I can assist with answering questions, searching the web, and much more!"},
{"prompt": "Who invented the computer?", "response": "Charles Babbage is known as the father of the computer."},
{"prompt": "Tell me a joke.", "response": "Why don’t scientists trust atoms? Because they make up everything!"},
{"prompt": "Who is the Prime Minister of India?", "response": "The current Prime Minister of India is Narendra Modi."},
{"prompt": "Who created you?", "response": "I was created by an expert team specializing in AI fine-tuning and web development."}
]
# Convert custom dataset to Hugging Face Dataset
dataset_custom = load_dataset("json", data_files={"train": custom_data})
# Load OpenWebText dataset (5% portion to avoid streaming issues)
dataset = load_dataset("Skylion007/openwebtext", split="train[:20%]")
# Tokenization function
def tokenize_function(examples):
return tokenizer(examples["text"], truncation=True, padding="max_length", max_length=512)
tokenized_datasets = dataset.map(tokenize_function, batched=True)
# Apply LoRA for efficient fine-tuning
lora_config = LoraConfig(
r=8, lora_alpha=32, lora_dropout=0.05, bias="none",
target_modules=["c_attn", "c_proj"] # Apply LoRA to attention layers
)
model = get_peft_model(model, lora_config)
model.gradient_checkpointing_enable() # Enable checkpointing for memory efficiency
# Training arguments
training_args = TrainingArguments(
output_dir="gpt2_finetuned",
auto_find_batch_size=True,
gradient_accumulation_steps=4,
learning_rate=5e-5,
num_train_epochs=3,
save_strategy="epoch",
logging_dir="logs",
bf16=True,
push_to_hub=True
)
# Trainer setup
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_datasets
)
# Start fine-tuning
trainer.train()
# Save and push the model to Hugging Face Hub
trainer.save_model("gpt2_finetuned")
tokenizer.save_pretrained("gpt2_finetuned")
trainer.push_to_hub()
# Deploy as Gradio Interface
def generate_response(prompt):
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=100)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
demo = gr.Interface(fn=generate_response, inputs="text", outputs="text")
demo.launch()
|