File size: 4,178 Bytes
fdd2607
ad8a314
 
0b103dc
ad8a314
 
2e415e2
 
 
ad8a314
 
08c8c12
 
 
2e415e2
08c8c12
 
 
ad8a314
2e415e2
ad8a314
 
08c8c12
ad8a314
 
08c8c12
ad8a314
 
 
 
 
 
 
 
 
 
 
 
2e415e2
 
 
 
 
 
 
 
 
 
 
ad8a314
2e415e2
ea92c48
2e415e2
ea92c48
 
 
0b103dc
ad8a314
 
 
0b103dc
ea92c48
 
 
 
0b103dc
c79c478
2e415e2
 
 
c79c478
 
0b103dc
2e415e2
 
0b103dc
2e415e2
 
ad8a314
0b103dc
ea92c48
 
 
ad8a314
ea92c48
0b103dc
ea92c48
ad8a314
2e415e2
ea92c48
 
 
2e415e2
ea92c48
0b103dc
ea92c48
 
 
 
ad8a314
 
ea92c48
 
 
 
 
 
0b103dc
ea92c48
 
 
 
 
 
0b103dc
ea92c48
0b103dc
 
ea92c48
 
 
 
0b103dc
ea92c48
ad8a314
 
 
ea92c48
2e415e2
ea92c48
ad8a314
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import gradio as gr
from huggingface_hub import InferenceClient

# Initialize Hugging Face Inference Client
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")

# Response Function
def respond(message, history, system_message, max_tokens, temperature, top_p):
    # Ensure correct message structure
    messages = [{"role": "system", "content": system_message}]

    if isinstance(history, list):
        for entry in history:
            if isinstance(entry, dict):
                messages.append(entry)
            elif isinstance(entry, tuple) and len(entry) == 2:
                messages.append({"role": "user", "content": entry[0]})
                messages.append({"role": "assistant", "content": entry[1]})

    # Append user message
    messages.append({"role": "user", "content": message})

    # Initialize response
    response = ""

    # Generate response
    for message in client.chat_completion(
        messages,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
    ):
        token = message.choices[0].delta.content
        response += token
        yield response


# Gradio Chat Interface
demo = gr.ChatInterface(
    respond,
    chatbot=gr.Chatbot(type="messages"),
    additional_inputs=[
        gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"),
    ],
)

# Fine-Tuning GPT-2 on Hugging Face Spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments
from datasets import Dataset
from peft import LoraConfig, get_peft_model
import torch

# Authenticate Hugging Face
from huggingface_hub import notebook_login
notebook_login()

# Load GPT-2 model and tokenizer
model_name = "gpt2"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)

# Custom Dataset (Predefined Q&A Pairs for Project Expo)
custom_data = [
    {"text": "Who are you?", "label": "I am Eva, a virtual voice assistant."},
    {"text": "What is your name?", "label": "I am Eva, how can I help you?"},
    {"text": "What can you do?", "label": "I can assist with answering questions, searching the web, and much more!"},
]

# Convert custom dataset to Hugging Face Dataset
dataset_custom = Dataset.from_dict({"text": [d['text'] for d in custom_data], 
                                    "label": [d['label'] for d in custom_data]})

# Load OpenWebText dataset (5% portion)
dataset = dataset_custom.train_test_split(test_size=0.2)['train']

# Tokenization function
def tokenize_function(examples):
    return tokenizer(examples["text"], truncation=True, padding="max_length", max_length=512)

tokenized_datasets = dataset.map(tokenize_function, batched=True)

# Apply LoRA for efficient fine-tuning
lora_config = LoraConfig(
    r=8, lora_alpha=32, lora_dropout=0.05, bias="none",
    target_modules=["c_attn", "c_proj"]
)

model = get_peft_model(model, lora_config)
model.gradient_checkpointing_enable()

# Training arguments
training_args = TrainingArguments(
    output_dir="gpt2_finetuned",
    auto_find_batch_size=True,
    gradient_accumulation_steps=4,
    learning_rate=5e-5,
    num_train_epochs=3,
    save_strategy="epoch",
    logging_dir="logs",
    bf16=True,
    push_to_hub=True
)

# Trainer setup
trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=tokenized_datasets
)

# Start fine-tuning
trainer.train()

# Save and push the model to Hugging Face Hub
trainer.save_model("gpt2_finetuned")
tokenizer.save_pretrained("gpt2_finetuned")
trainer.push_to_hub()

# Deploy as Gradio Interface
def generate_response(prompt):
    inputs = tokenizer(prompt, return_tensors="pt")
    outputs = model.generate(**inputs, max_length=100)
    return tokenizer.decode(outputs[0], skip_special_tokens=True)

# Corrected Gradio Interface
demo = gr.Interface(fn=generate_response, inputs="text", outputs="text")
demo.launch()