Spaces:
Running
Running
File size: 4,178 Bytes
fdd2607 ad8a314 0b103dc ad8a314 2e415e2 ad8a314 08c8c12 2e415e2 08c8c12 ad8a314 2e415e2 ad8a314 08c8c12 ad8a314 08c8c12 ad8a314 2e415e2 ad8a314 2e415e2 ea92c48 2e415e2 ea92c48 0b103dc ad8a314 0b103dc ea92c48 0b103dc c79c478 2e415e2 c79c478 0b103dc 2e415e2 0b103dc 2e415e2 ad8a314 0b103dc ea92c48 ad8a314 ea92c48 0b103dc ea92c48 ad8a314 2e415e2 ea92c48 2e415e2 ea92c48 0b103dc ea92c48 ad8a314 ea92c48 0b103dc ea92c48 0b103dc ea92c48 0b103dc ea92c48 0b103dc ea92c48 ad8a314 ea92c48 2e415e2 ea92c48 ad8a314 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
import gradio as gr
from huggingface_hub import InferenceClient
# Initialize Hugging Face Inference Client
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
# Response Function
def respond(message, history, system_message, max_tokens, temperature, top_p):
# Ensure correct message structure
messages = [{"role": "system", "content": system_message}]
if isinstance(history, list):
for entry in history:
if isinstance(entry, dict):
messages.append(entry)
elif isinstance(entry, tuple) and len(entry) == 2:
messages.append({"role": "user", "content": entry[0]})
messages.append({"role": "assistant", "content": entry[1]})
# Append user message
messages.append({"role": "user", "content": message})
# Initialize response
response = ""
# Generate response
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
# Gradio Chat Interface
demo = gr.ChatInterface(
respond,
chatbot=gr.Chatbot(type="messages"),
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"),
],
)
# Fine-Tuning GPT-2 on Hugging Face Spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments
from datasets import Dataset
from peft import LoraConfig, get_peft_model
import torch
# Authenticate Hugging Face
from huggingface_hub import notebook_login
notebook_login()
# Load GPT-2 model and tokenizer
model_name = "gpt2"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Custom Dataset (Predefined Q&A Pairs for Project Expo)
custom_data = [
{"text": "Who are you?", "label": "I am Eva, a virtual voice assistant."},
{"text": "What is your name?", "label": "I am Eva, how can I help you?"},
{"text": "What can you do?", "label": "I can assist with answering questions, searching the web, and much more!"},
]
# Convert custom dataset to Hugging Face Dataset
dataset_custom = Dataset.from_dict({"text": [d['text'] for d in custom_data],
"label": [d['label'] for d in custom_data]})
# Load OpenWebText dataset (5% portion)
dataset = dataset_custom.train_test_split(test_size=0.2)['train']
# Tokenization function
def tokenize_function(examples):
return tokenizer(examples["text"], truncation=True, padding="max_length", max_length=512)
tokenized_datasets = dataset.map(tokenize_function, batched=True)
# Apply LoRA for efficient fine-tuning
lora_config = LoraConfig(
r=8, lora_alpha=32, lora_dropout=0.05, bias="none",
target_modules=["c_attn", "c_proj"]
)
model = get_peft_model(model, lora_config)
model.gradient_checkpointing_enable()
# Training arguments
training_args = TrainingArguments(
output_dir="gpt2_finetuned",
auto_find_batch_size=True,
gradient_accumulation_steps=4,
learning_rate=5e-5,
num_train_epochs=3,
save_strategy="epoch",
logging_dir="logs",
bf16=True,
push_to_hub=True
)
# Trainer setup
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_datasets
)
# Start fine-tuning
trainer.train()
# Save and push the model to Hugging Face Hub
trainer.save_model("gpt2_finetuned")
tokenizer.save_pretrained("gpt2_finetuned")
trainer.push_to_hub()
# Deploy as Gradio Interface
def generate_response(prompt):
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=100)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
# Corrected Gradio Interface
demo = gr.Interface(fn=generate_response, inputs="text", outputs="text")
demo.launch()
|