Spaces:
Sleeping
Sleeping
File size: 4,109 Bytes
fdd2607 ad8a314 301f745 ad8a314 301f745 ad8a314 301f745 ad8a314 301f745 ad8a314 301f745 ad8a314 301f745 ea92c48 ad8a314 ea92c48 ad8a314 ea92c48 c79c478 ad8a314 c79c478 ad8a314 301f745 ad8a314 ea92c48 ad8a314 ea92c48 ad8a314 301f745 ea92c48 ad8a314 ea92c48 ad8a314 ea92c48 ad8a314 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
import gradio as gr
from huggingface_hub import InferenceClient
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
def respond(
message,
history,
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message}]
# Updated for OpenAI-style format (replacing tuples)
for entry in history:
role = "user" if entry["role"] == "user" else "assistant"
messages.append({"role": role, "content": entry["content"]})
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
# Updated ChatInterface with correct type
demo = gr.ChatInterface(
respond,
chatbot=gr.Chatbot(type="messages"), # Correct format
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
],
)
if __name__ == "__main__":
demo.launch()
# -----------------------------------------------
# Fine-Tuning GPT-2 on Hugging Face Spaces (Improved Section)
# -----------------------------------------------
from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments
from datasets import load_dataset
from peft import LoraConfig, get_peft_model
import torch
from huggingface_hub import notebook_login
notebook_login()
model_name = "gpt2"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
custom_data = [
{"prompt": "Who are you?", "response": "I am Eva, a virtual voice assistant."},
{"prompt": "What is your name?", "response": "I am Eva, how can I help you?"},
{"prompt": "What can you do?", "response": "I can assist with answering questions, searching the web, and much more!"},
{"prompt": "Who invented the computer?", "response": "Charles Babbage is known as the father of the computer."},
{"prompt": "Tell me a joke.", "response": "Why don’t scientists trust atoms? Because they make up everything!"},
{"prompt": "Who is the Prime Minister of India?", "response": "The current Prime Minister of India is Narendra Modi."},
{"prompt": "Who created you?", "response": "I was created by an expert team specializing in AI fine-tuning and web development."}
]
dataset_custom = load_dataset("json", data_files={"train": custom_data})
dataset = load_dataset("Skylion007/openwebtext", split="train[:20%]")
def tokenize_function(examples):
return tokenizer(examples["text"], truncation=True, padding="max_length", max_length=512)
tokenized_datasets = dataset.map(tokenize_function, batched=True)
lora_config = LoraConfig(
r=8, lora_alpha=32, lora_dropout=0.05, bias="none",
target_modules=["c_attn", "c_proj"]
)
model = get_peft_model(model, lora_config)
model.gradient_checkpointing_enable()
training_args = TrainingArguments(
output_dir="gpt2_finetuned",
auto_find_batch_size=True,
gradient_accumulation_steps=4,
learning_rate=5e-5,
num_train_epochs=3,
save_strategy="epoch",
logging_dir="logs",
bf16=True,
push_to_hub=True
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_datasets
)
trainer.train()
trainer.save_model("gpt2_finetuned")
tokenizer.save_pretrained("gpt2_finetuned")
trainer.push_to_hub()
def generate_response(prompt):
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=100)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
demo = gr.Interface(fn=generate_response, inputs="text", outputs="text")
demo.launch()
|