File size: 4,109 Bytes
fdd2607
ad8a314
 
 
 
 
 
301f745
ad8a314
 
 
 
 
 
 
301f745
 
 
 
ad8a314
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
301f745
ad8a314
 
301f745
ad8a314
 
 
 
301f745
ad8a314
 
 
 
 
 
301f745
 
 
ea92c48
ad8a314
ea92c48
 
 
ad8a314
 
 
ea92c48
 
 
 
c79c478
ad8a314
 
 
 
 
 
 
c79c478
 
ad8a314
301f745
ad8a314
ea92c48
 
 
ad8a314
ea92c48
 
ad8a314
301f745
ea92c48
 
 
 
 
 
 
 
 
ad8a314
 
ea92c48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad8a314
 
 
ea92c48
 
ad8a314
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import gradio as gr
from huggingface_hub import InferenceClient

client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")

def respond(
    message,
    history,
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    messages = [{"role": "system", "content": system_message}]

    # Updated for OpenAI-style format (replacing tuples)
    for entry in history:
        role = "user" if entry["role"] == "user" else "assistant"
        messages.append({"role": role, "content": entry["content"]})

    messages.append({"role": "user", "content": message})

    response = ""

    for message in client.chat_completion(
        messages,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
    ):
        token = message.choices[0].delta.content
        response += token
        yield response

# Updated ChatInterface with correct type
demo = gr.ChatInterface(
    respond,
    chatbot=gr.Chatbot(type="messages"),  # Correct format
    additional_inputs=[
        gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
    ],
)

if __name__ == "__main__":
    demo.launch()

# -----------------------------------------------
# Fine-Tuning GPT-2 on Hugging Face Spaces (Improved Section)
# -----------------------------------------------
from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments
from datasets import load_dataset
from peft import LoraConfig, get_peft_model
import torch

from huggingface_hub import notebook_login
notebook_login()

model_name = "gpt2"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)

custom_data = [
    {"prompt": "Who are you?", "response": "I am Eva, a virtual voice assistant."},
    {"prompt": "What is your name?", "response": "I am Eva, how can I help you?"},
    {"prompt": "What can you do?", "response": "I can assist with answering questions, searching the web, and much more!"},
    {"prompt": "Who invented the computer?", "response": "Charles Babbage is known as the father of the computer."},
    {"prompt": "Tell me a joke.", "response": "Why don’t scientists trust atoms? Because they make up everything!"},
    {"prompt": "Who is the Prime Minister of India?", "response": "The current Prime Minister of India is Narendra Modi."},
    {"prompt": "Who created you?", "response": "I was created by an expert team specializing in AI fine-tuning and web development."}
]

dataset_custom = load_dataset("json", data_files={"train": custom_data})
dataset = load_dataset("Skylion007/openwebtext", split="train[:20%]")

def tokenize_function(examples):
    return tokenizer(examples["text"], truncation=True, padding="max_length", max_length=512)

tokenized_datasets = dataset.map(tokenize_function, batched=True)

lora_config = LoraConfig(
    r=8, lora_alpha=32, lora_dropout=0.05, bias="none",
    target_modules=["c_attn", "c_proj"]
)

model = get_peft_model(model, lora_config)
model.gradient_checkpointing_enable()

training_args = TrainingArguments(
    output_dir="gpt2_finetuned",
    auto_find_batch_size=True,
    gradient_accumulation_steps=4,
    learning_rate=5e-5,
    num_train_epochs=3,
    save_strategy="epoch",
    logging_dir="logs",
    bf16=True,
    push_to_hub=True
)

trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=tokenized_datasets
)

trainer.train()
trainer.save_model("gpt2_finetuned")
tokenizer.save_pretrained("gpt2_finetuned")
trainer.push_to_hub()

def generate_response(prompt):
    inputs = tokenizer(prompt, return_tensors="pt")
    outputs = model.generate(**inputs, max_length=100)
    return tokenizer.decode(outputs[0], skip_special_tokens=True)

demo = gr.Interface(fn=generate_response, inputs="text", outputs="text")
demo.launch()