Faizal2805 commited on
Commit
e702117
·
verified ·
1 Parent(s): d402657

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +70 -50
app.py CHANGED
@@ -1,63 +1,31 @@
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
-
4
- # Initialize Hugging Face Inference Client
5
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
6
-
7
- # Response Function
8
- def respond(message, history, system_message, max_tokens, temperature, top_p):
9
- messages = [{"role": "system", "content": system_message}]
10
-
11
- if isinstance(history, list):
12
- for entry in history:
13
- if isinstance(entry, dict):
14
- messages.append(entry)
15
- elif isinstance(entry, tuple) and len(entry) == 2:
16
- messages.append({"role": "user", "content": entry[0]})
17
- messages.append({"role": "assistant", "content": entry[1]})
18
-
19
- messages.append({"role": "user", "content": message})
20
-
21
- response = ""
22
-
23
- for message in client.chat_completion(
24
- messages,
25
- max_tokens=max_tokens,
26
- stream=True,
27
- temperature=temperature,
28
- top_p=top_p,
29
- ):
30
- token = message.choices[0].delta.content
31
- response += token
32
- yield response
33
-
34
- # Gradio Chat Interface
35
- demo = gr.ChatInterface(
36
- respond,
37
- additional_inputs=[
38
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
39
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
40
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
41
- gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"),
42
- ],
43
- )
44
-
45
- # Fine-Tuning GPT-2 on Hugging Face Spaces
46
  from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments
47
- from datasets import Dataset
48
  from peft import LoraConfig, get_peft_model
49
  import torch
50
 
 
 
 
51
  # Load GPT-2 model and tokenizer
52
  model_name = "gpt2"
53
  tokenizer = AutoTokenizer.from_pretrained(model_name)
54
  model = AutoModelForCausalLM.from_pretrained(model_name)
55
 
 
 
 
 
56
  # Custom Dataset (Predefined Q&A Pairs for Project Expo)
57
  custom_data = [
58
  {"text": "Who are you?", "label": "I am Eva, a virtual voice assistant."},
59
  {"text": "What is your name?", "label": "I am Eva, how can I help you?"},
60
  {"text": "What can you do?", "label": "I can assist with answering questions, searching the web, and much more!"},
 
 
 
 
61
  ]
62
 
63
  # Convert custom dataset to Hugging Face Dataset
@@ -66,20 +34,28 @@ dataset_custom = Dataset.from_dict({
66
  "label": [d['label'] for d in custom_data]
67
  })
68
 
 
 
 
69
  # Tokenization function
70
  def tokenize_function(examples):
71
- return tokenizer(examples["text"], truncation=True, padding="max_length", max_length=512)
 
 
 
 
 
72
 
73
  tokenized_datasets = dataset_custom.map(tokenize_function, batched=True)
74
 
75
  # Apply LoRA for efficient fine-tuning
76
  lora_config = LoraConfig(
77
  r=8, lora_alpha=32, lora_dropout=0.05, bias="none",
78
- target_modules=["c_attn", "c_proj"]
79
  )
80
 
81
  model = get_peft_model(model, lora_config)
82
- model.gradient_checkpointing_enable()
83
 
84
  # Training arguments
85
  training_args = TrainingArguments(
@@ -115,6 +91,50 @@ def generate_response(prompt):
115
  outputs = model.generate(**inputs, max_length=100)
116
  return tokenizer.decode(outputs[0], skip_special_tokens=True)
117
 
118
- # Corrected Gradio Interface
119
- demo = gr.Interface(fn=generate_response, inputs="text", outputs="text")
120
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments
4
+ from datasets import Dataset, load_dataset
5
  from peft import LoraConfig, get_peft_model
6
  import torch
7
 
8
+ # Initialize Hugging Face Inference Client
9
+ client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
10
+
11
  # Load GPT-2 model and tokenizer
12
  model_name = "gpt2"
13
  tokenizer = AutoTokenizer.from_pretrained(model_name)
14
  model = AutoModelForCausalLM.from_pretrained(model_name)
15
 
16
+ # Add padding token (GPT-2 fix)
17
+ if tokenizer.pad_token is None:
18
+ tokenizer.pad_token = tokenizer.eos_token
19
+
20
  # Custom Dataset (Predefined Q&A Pairs for Project Expo)
21
  custom_data = [
22
  {"text": "Who are you?", "label": "I am Eva, a virtual voice assistant."},
23
  {"text": "What is your name?", "label": "I am Eva, how can I help you?"},
24
  {"text": "What can you do?", "label": "I can assist with answering questions, searching the web, and much more!"},
25
+ {"text": "Who invented the computer?", "label": "Charles Babbage is known as the father of the computer."},
26
+ {"text": "Tell me a joke.", "label": "Why don’t scientists trust atoms? Because they make up everything!"},
27
+ {"text": "Who is the Prime Minister of India?", "label": "The current Prime Minister of India is Narendra Modi."},
28
+ {"text": "Who created you?", "label": "I was created by an expert team specializing in AI fine-tuning and web development."}
29
  ]
30
 
31
  # Convert custom dataset to Hugging Face Dataset
 
34
  "label": [d['label'] for d in custom_data]
35
  })
36
 
37
+ # Load OpenWebText dataset (5% portion to avoid streaming issues)
38
+ dataset = load_dataset("Skylion007/openwebtext", split="train[:20%]")
39
+
40
  # Tokenization function
41
  def tokenize_function(examples):
42
+ return tokenizer(
43
+ examples["text"],
44
+ truncation=True,
45
+ padding="max_length",
46
+ max_length=512
47
+ )
48
 
49
  tokenized_datasets = dataset_custom.map(tokenize_function, batched=True)
50
 
51
  # Apply LoRA for efficient fine-tuning
52
  lora_config = LoraConfig(
53
  r=8, lora_alpha=32, lora_dropout=0.05, bias="none",
54
+ target_modules=["c_attn", "c_proj"] # Apply LoRA to attention layers
55
  )
56
 
57
  model = get_peft_model(model, lora_config)
58
+ model.gradient_checkpointing_enable() # Enable checkpointing for memory efficiency
59
 
60
  # Training arguments
61
  training_args = TrainingArguments(
 
91
  outputs = model.generate(**inputs, max_length=100)
92
  return tokenizer.decode(outputs[0], skip_special_tokens=True)
93
 
94
+ # Gradio Chat Interface
95
+ def respond(message, history, system_message, max_tokens, temperature, top_p):
96
+ messages = [{"role": "system", "content": system_message}]
97
+
98
+ # Ensure 'history' is handled as a list of dicts
99
+ if isinstance(history, list):
100
+ for entry in history:
101
+ if isinstance(entry, dict):
102
+ messages.append(entry) # Correct format already
103
+ elif isinstance(entry, tuple) and len(entry) == 2:
104
+ messages.append({"role": "user", "content": entry[0]})
105
+ messages.append({"role": "assistant", "content": entry[1]})
106
+
107
+ messages.append({"role": "user", "content": message})
108
+ response = ""
109
+
110
+ for message in client.chat_completion(
111
+ messages,
112
+ max_tokens=max_tokens,
113
+ stream=True,
114
+ temperature=temperature,
115
+ top_p=top_p,
116
+ ):
117
+ token = message.choices[0].delta.content
118
+ response += token
119
+ yield response
120
+
121
+ demo = gr.ChatInterface(
122
+ respond,
123
+ chatbot=gr.Chatbot(type="messages"),
124
+ additional_inputs=[
125
+ gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
126
+ gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
127
+ gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
128
+ gr.Slider(
129
+ minimum=0.1,
130
+ maximum=1.0,
131
+ value=0.95,
132
+ step=0.05,
133
+ label="Top-p (nucleus sampling)",
134
+ ),
135
+ ],
136
+ )
137
+
138
+ # Launch the Gradio app
139
+ if __name__ == "__main__":
140
+ demo.launch()