Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,121 +1,44 @@
|
|
1 |
import gradio as gr
|
2 |
-
from huggingface_hub import InferenceClient
|
3 |
-
|
4 |
-
"""
|
5 |
-
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
6 |
-
"""
|
7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
-
|
9 |
-
|
10 |
-
def respond(
|
11 |
-
message,
|
12 |
-
history: list[tuple[str, str]],
|
13 |
-
system_message,
|
14 |
-
max_tokens,
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
-
|
20 |
-
for val in history:
|
21 |
-
if val[0]:
|
22 |
-
messages.append({"role": "user", "content": val[0]})
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
-
|
26 |
-
messages.append({"role": "user", "content": message})
|
27 |
-
|
28 |
-
response = ""
|
29 |
-
|
30 |
-
for message in client.chat_completion(
|
31 |
-
messages,
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
-
|
42 |
-
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
-
demo = gr.ChatInterface(
|
47 |
-
respond,
|
48 |
-
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
-
)
|
61 |
-
|
62 |
-
if __name__ == "__main__":
|
63 |
-
demo.launch()
|
64 |
-
|
65 |
-
# Fine-Tuning GPT-2 on Hugging Face Spaces (Streaming 40GB Dataset, No Storage Issues)
|
66 |
-
|
67 |
-
# Install required libraries
|
68 |
-
# Install required libraries (Run this separately in a terminal or notebook cell)
|
69 |
-
# !pip install transformers datasets peft accelerate bitsandbytes torch torchvision torchaudio gradio -q
|
70 |
-
|
71 |
from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments
|
72 |
-
from datasets import load_dataset
|
73 |
from peft import LoraConfig, get_peft_model
|
74 |
import torch
|
75 |
|
76 |
-
# Authenticate Hugging Face
|
77 |
-
from huggingface_hub import notebook_login
|
78 |
-
notebook_login()
|
79 |
-
|
80 |
# Load GPT-2 model and tokenizer
|
81 |
model_name = "gpt2"
|
82 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
83 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
84 |
|
85 |
-
#
|
86 |
-
|
87 |
-
# Custom Dataset (Predefined Q&A Pairs for Project Expo)
|
88 |
custom_data = [
|
89 |
-
{"
|
90 |
-
{"
|
91 |
-
{"
|
92 |
-
{"
|
93 |
-
{"
|
94 |
-
{"
|
95 |
-
{"
|
|
|
96 |
]
|
97 |
|
98 |
-
# Convert custom
|
99 |
-
dataset_custom =
|
100 |
-
|
101 |
-
# Merge with OpenWebText dataset
|
102 |
-
dataset = load_dataset("Skylion007/openwebtext", split="train[:20%]") # Load 5% to avoid streaming issues
|
103 |
|
104 |
-
# Tokenization function
|
105 |
def tokenize_function(examples):
|
106 |
return tokenizer(examples["text"], truncation=True, padding="max_length", max_length=512)
|
107 |
|
108 |
-
tokenized_datasets =
|
109 |
|
110 |
# Apply LoRA for efficient fine-tuning
|
111 |
lora_config = LoraConfig(
|
112 |
-
r=
|
113 |
-
|
|
|
|
|
|
|
114 |
)
|
115 |
|
116 |
model = get_peft_model(model, lora_config)
|
117 |
-
|
118 |
-
# Enable gradient checkpointing to reduce memory usage
|
119 |
model.gradient_checkpointing_enable()
|
120 |
|
121 |
# Training arguments
|
@@ -123,8 +46,8 @@ training_args = TrainingArguments(
|
|
123 |
output_dir="gpt2_finetuned",
|
124 |
auto_find_batch_size=True,
|
125 |
gradient_accumulation_steps=4,
|
126 |
-
learning_rate=
|
127 |
-
num_train_epochs=
|
128 |
save_strategy="epoch",
|
129 |
logging_dir="logs",
|
130 |
bf16=True,
|
@@ -138,19 +61,20 @@ trainer = Trainer(
|
|
138 |
train_dataset=tokenized_datasets
|
139 |
)
|
140 |
|
141 |
-
# Start fine-tuning
|
142 |
trainer.train()
|
143 |
|
144 |
-
# Save and push the model
|
145 |
trainer.save_model("gpt2_finetuned")
|
146 |
tokenizer.save_pretrained("gpt2_finetuned")
|
147 |
trainer.push_to_hub()
|
148 |
|
149 |
-
#
|
150 |
def generate_response(prompt):
|
151 |
-
inputs = tokenizer(prompt, return_tensors="pt")
|
152 |
-
outputs = model.generate(**inputs, max_length=
|
153 |
-
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
154 |
|
155 |
demo = gr.Interface(fn=generate_response, inputs="text", outputs="text")
|
156 |
-
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments
|
3 |
+
from datasets import load_dataset, Dataset
|
4 |
from peft import LoraConfig, get_peft_model
|
5 |
import torch
|
6 |
|
|
|
|
|
|
|
|
|
7 |
# Load GPT-2 model and tokenizer
|
8 |
model_name = "gpt2"
|
9 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
10 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
11 |
|
12 |
+
# Custom Dataset (Improved format)
|
|
|
|
|
13 |
custom_data = [
|
14 |
+
{"text": "Prompt: Who are you?\nResponse: I am Eva, a virtual voice assistant."},
|
15 |
+
{"text": "Prompt: What is your name?\nResponse: I am Eva, how can I help you?"},
|
16 |
+
{"text": "Prompt: What can you do?\nResponse: I can assist with answering questions, searching the web, and much more!"},
|
17 |
+
{"text": "Prompt: Who invented the computer?\nResponse: Charles Babbage is known as the father of the computer."},
|
18 |
+
{"text": "Prompt: Tell me a joke.\nResponse: Why don’t scientists trust atoms? Because they make up everything!"},
|
19 |
+
{"text": "Prompt: Who is the Prime Minister of India?\nResponse: The current Prime Minister of India is Narendra Modi."},
|
20 |
+
{"text": "Prompt: Who created you?\nResponse: I was created by an expert team specializing in AI fine-tuning and web development."},
|
21 |
+
{"text": "Prompt: Can you introduce yourself?\nResponse: I am Eva, your AI assistant, designed to assist and provide information."}
|
22 |
]
|
23 |
|
24 |
+
# Convert custom data to a Dataset
|
25 |
+
dataset_custom = Dataset.from_list(custom_data)
|
|
|
|
|
|
|
26 |
|
|
|
27 |
def tokenize_function(examples):
|
28 |
return tokenizer(examples["text"], truncation=True, padding="max_length", max_length=512)
|
29 |
|
30 |
+
tokenized_datasets = dataset_custom.map(tokenize_function, batched=True)
|
31 |
|
32 |
# Apply LoRA for efficient fine-tuning
|
33 |
lora_config = LoraConfig(
|
34 |
+
r=4, # Reduced r for stability
|
35 |
+
lora_alpha=16,
|
36 |
+
lora_dropout=0.1,
|
37 |
+
bias="none",
|
38 |
+
target_modules=["c_attn", "c_proj"] # LoRA targets attention layers
|
39 |
)
|
40 |
|
41 |
model = get_peft_model(model, lora_config)
|
|
|
|
|
42 |
model.gradient_checkpointing_enable()
|
43 |
|
44 |
# Training arguments
|
|
|
46 |
output_dir="gpt2_finetuned",
|
47 |
auto_find_batch_size=True,
|
48 |
gradient_accumulation_steps=4,
|
49 |
+
learning_rate=3e-5, # Lowered learning rate for improved stability
|
50 |
+
num_train_epochs=5, # Increased epochs for better training
|
51 |
save_strategy="epoch",
|
52 |
logging_dir="logs",
|
53 |
bf16=True,
|
|
|
61 |
train_dataset=tokenized_datasets
|
62 |
)
|
63 |
|
|
|
64 |
trainer.train()
|
65 |
|
66 |
+
# Save and push the model
|
67 |
trainer.save_model("gpt2_finetuned")
|
68 |
tokenizer.save_pretrained("gpt2_finetuned")
|
69 |
trainer.push_to_hub()
|
70 |
|
71 |
+
# Gradio Interface for Responses
|
72 |
def generate_response(prompt):
|
73 |
+
inputs = tokenizer(f"Prompt: {prompt}\nResponse:", return_tensors="pt")
|
74 |
+
outputs = model.generate(**inputs, max_length=150, num_return_sequences=1, temperature=0.7, top_p=0.9)
|
75 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True).split("Response:")[-1].strip()
|
76 |
|
77 |
demo = gr.Interface(fn=generate_response, inputs="text", outputs="text")
|
78 |
+
|
79 |
+
if __name__ == "__main__":
|
80 |
+
demo.launch()
|