Faizal2805 commited on
Commit
f0d69bf
·
verified ·
1 Parent(s): 0334947

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +28 -104
app.py CHANGED
@@ -1,121 +1,44 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
-
62
- if __name__ == "__main__":
63
- demo.launch()
64
-
65
- # Fine-Tuning GPT-2 on Hugging Face Spaces (Streaming 40GB Dataset, No Storage Issues)
66
-
67
- # Install required libraries
68
- # Install required libraries (Run this separately in a terminal or notebook cell)
69
- # !pip install transformers datasets peft accelerate bitsandbytes torch torchvision torchaudio gradio -q
70
-
71
  from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments
72
- from datasets import load_dataset
73
  from peft import LoraConfig, get_peft_model
74
  import torch
75
 
76
- # Authenticate Hugging Face
77
- from huggingface_hub import notebook_login
78
- notebook_login()
79
-
80
  # Load GPT-2 model and tokenizer
81
  model_name = "gpt2"
82
  tokenizer = AutoTokenizer.from_pretrained(model_name)
83
  model = AutoModelForCausalLM.from_pretrained(model_name)
84
 
85
- # Load the OpenWebText dataset using streaming (No download required)
86
-
87
- # Custom Dataset (Predefined Q&A Pairs for Project Expo)
88
  custom_data = [
89
- {"prompt": "Who are you?", "response": "I am Eva, a virtual voice assistant."},
90
- {"prompt": "What is your name?", "response": "I am Eva, how can I help you?"},
91
- {"prompt": "What can you do?", "response": "I can assist with answering questions, searching the web, and much more!"},
92
- {"prompt": "Who invented the computer?", "response": "Charles Babbage is known as the father of the computer."},
93
- {"prompt": "Tell me a joke.", "response": "Why don’t scientists trust atoms? Because they make up everything!"},
94
- {"prompt": "Who is the Prime Minister of India?", "response": "The current Prime Minister of India is Narendra Modi."},
95
- {"prompt": "Who created you?", "response": "I was created by an expert team specializing in AI fine-tuning and web development."}
 
96
  ]
97
 
98
- # Convert custom dataset to Hugging Face Dataset
99
- dataset_custom = load_dataset("json", data_files={"train": custom_data})
100
-
101
- # Merge with OpenWebText dataset
102
- dataset = load_dataset("Skylion007/openwebtext", split="train[:20%]") # Load 5% to avoid streaming issues
103
 
104
- # Tokenization function
105
  def tokenize_function(examples):
106
  return tokenizer(examples["text"], truncation=True, padding="max_length", max_length=512)
107
 
108
- tokenized_datasets = dataset.map(tokenize_function, batched=True)
109
 
110
  # Apply LoRA for efficient fine-tuning
111
  lora_config = LoraConfig(
112
- r=8, lora_alpha=32, lora_dropout=0.05, bias="none",
113
- target_modules=["c_attn", "c_proj"] # Apply LoRA to attention layers
 
 
 
114
  )
115
 
116
  model = get_peft_model(model, lora_config)
117
-
118
- # Enable gradient checkpointing to reduce memory usage
119
  model.gradient_checkpointing_enable()
120
 
121
  # Training arguments
@@ -123,8 +46,8 @@ training_args = TrainingArguments(
123
  output_dir="gpt2_finetuned",
124
  auto_find_batch_size=True,
125
  gradient_accumulation_steps=4,
126
- learning_rate=5e-5,
127
- num_train_epochs=3,
128
  save_strategy="epoch",
129
  logging_dir="logs",
130
  bf16=True,
@@ -138,19 +61,20 @@ trainer = Trainer(
138
  train_dataset=tokenized_datasets
139
  )
140
 
141
- # Start fine-tuning
142
  trainer.train()
143
 
144
- # Save and push the model to Hugging Face Hub
145
  trainer.save_model("gpt2_finetuned")
146
  tokenizer.save_pretrained("gpt2_finetuned")
147
  trainer.push_to_hub()
148
 
149
- # Deploy as Gradio Interface
150
  def generate_response(prompt):
151
- inputs = tokenizer(prompt, return_tensors="pt")
152
- outputs = model.generate(**inputs, max_length=100)
153
- return tokenizer.decode(outputs[0], skip_special_tokens=True)
154
 
155
  demo = gr.Interface(fn=generate_response, inputs="text", outputs="text")
156
- demo.launch()
 
 
 
1
  import gradio as gr
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments
3
+ from datasets import load_dataset, Dataset
4
  from peft import LoraConfig, get_peft_model
5
  import torch
6
 
 
 
 
 
7
  # Load GPT-2 model and tokenizer
8
  model_name = "gpt2"
9
  tokenizer = AutoTokenizer.from_pretrained(model_name)
10
  model = AutoModelForCausalLM.from_pretrained(model_name)
11
 
12
+ # Custom Dataset (Improved format)
 
 
13
  custom_data = [
14
+ {"text": "Prompt: Who are you?\nResponse: I am Eva, a virtual voice assistant."},
15
+ {"text": "Prompt: What is your name?\nResponse: I am Eva, how can I help you?"},
16
+ {"text": "Prompt: What can you do?\nResponse: I can assist with answering questions, searching the web, and much more!"},
17
+ {"text": "Prompt: Who invented the computer?\nResponse: Charles Babbage is known as the father of the computer."},
18
+ {"text": "Prompt: Tell me a joke.\nResponse: Why don’t scientists trust atoms? Because they make up everything!"},
19
+ {"text": "Prompt: Who is the Prime Minister of India?\nResponse: The current Prime Minister of India is Narendra Modi."},
20
+ {"text": "Prompt: Who created you?\nResponse: I was created by an expert team specializing in AI fine-tuning and web development."},
21
+ {"text": "Prompt: Can you introduce yourself?\nResponse: I am Eva, your AI assistant, designed to assist and provide information."}
22
  ]
23
 
24
+ # Convert custom data to a Dataset
25
+ dataset_custom = Dataset.from_list(custom_data)
 
 
 
26
 
 
27
  def tokenize_function(examples):
28
  return tokenizer(examples["text"], truncation=True, padding="max_length", max_length=512)
29
 
30
+ tokenized_datasets = dataset_custom.map(tokenize_function, batched=True)
31
 
32
  # Apply LoRA for efficient fine-tuning
33
  lora_config = LoraConfig(
34
+ r=4, # Reduced r for stability
35
+ lora_alpha=16,
36
+ lora_dropout=0.1,
37
+ bias="none",
38
+ target_modules=["c_attn", "c_proj"] # LoRA targets attention layers
39
  )
40
 
41
  model = get_peft_model(model, lora_config)
 
 
42
  model.gradient_checkpointing_enable()
43
 
44
  # Training arguments
 
46
  output_dir="gpt2_finetuned",
47
  auto_find_batch_size=True,
48
  gradient_accumulation_steps=4,
49
+ learning_rate=3e-5, # Lowered learning rate for improved stability
50
+ num_train_epochs=5, # Increased epochs for better training
51
  save_strategy="epoch",
52
  logging_dir="logs",
53
  bf16=True,
 
61
  train_dataset=tokenized_datasets
62
  )
63
 
 
64
  trainer.train()
65
 
66
+ # Save and push the model
67
  trainer.save_model("gpt2_finetuned")
68
  tokenizer.save_pretrained("gpt2_finetuned")
69
  trainer.push_to_hub()
70
 
71
+ # Gradio Interface for Responses
72
  def generate_response(prompt):
73
+ inputs = tokenizer(f"Prompt: {prompt}\nResponse:", return_tensors="pt")
74
+ outputs = model.generate(**inputs, max_length=150, num_return_sequences=1, temperature=0.7, top_p=0.9)
75
+ return tokenizer.decode(outputs[0], skip_special_tokens=True).split("Response:")[-1].strip()
76
 
77
  demo = gr.Interface(fn=generate_response, inputs="text", outputs="text")
78
+
79
+ if __name__ == "__main__":
80
+ demo.launch()