import gradio as gr from huggingface_hub import InferenceClient # Initialize Hugging Face Inference Client client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") # Response Function def respond(message, history, system_message, max_tokens, temperature, top_p): # Ensure correct message structure messages = [{"role": "system", "content": system_message}] if isinstance(history, list): for entry in history: if isinstance(entry, dict): messages.append(entry) elif isinstance(entry, tuple) and len(entry) == 2: messages.append({"role": "user", "content": entry[0]}) messages.append({"role": "assistant", "content": entry[1]}) # Append user message messages.append({"role": "user", "content": message}) # Initialize response response = "" # Generate response for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response # Gradio Chat Interface demo = gr.ChatInterface( respond, chatbot=gr.Chatbot(type="messages"), additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"), ], ) # Fine-Tuning GPT-2 on Hugging Face Spaces from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments from datasets import Dataset from peft import LoraConfig, get_peft_model import torch # Authenticate Hugging Face from huggingface_hub import notebook_login notebook_login() # Load GPT-2 model and tokenizer model_name = "gpt2" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) # Custom Dataset (Predefined Q&A Pairs for Project Expo) custom_data = [ {"text": "Who are you?", "label": "I am Eva, a virtual voice assistant."}, {"text": "What is your name?", "label": "I am Eva, how can I help you?"}, {"text": "What can you do?", "label": "I can assist with answering questions, searching the web, and much more!"}, ] # Convert custom dataset to Hugging Face Dataset dataset_custom = Dataset.from_dict({"text": [d['text'] for d in custom_data], "label": [d['label'] for d in custom_data]}) # Load OpenWebText dataset (5% portion) dataset = dataset_custom.train_test_split(test_size=0.2)['train'] # Tokenization function def tokenize_function(examples): return tokenizer(examples["text"], truncation=True, padding="max_length", max_length=512) tokenized_datasets = dataset.map(tokenize_function, batched=True) # Apply LoRA for efficient fine-tuning lora_config = LoraConfig( r=8, lora_alpha=32, lora_dropout=0.05, bias="none", target_modules=["c_attn", "c_proj"] ) model = get_peft_model(model, lora_config) model.gradient_checkpointing_enable() # Training arguments training_args = TrainingArguments( output_dir="gpt2_finetuned", auto_find_batch_size=True, gradient_accumulation_steps=4, learning_rate=5e-5, num_train_epochs=3, save_strategy="epoch", logging_dir="logs", bf16=True, push_to_hub=True ) # Trainer setup trainer = Trainer( model=model, args=training_args, train_dataset=tokenized_datasets ) # Start fine-tuning trainer.train() # Save and push the model to Hugging Face Hub trainer.save_model("gpt2_finetuned") tokenizer.save_pretrained("gpt2_finetuned") trainer.push_to_hub() # Deploy as Gradio Interface def generate_response(prompt): inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(**inputs, max_length=100) return tokenizer.decode(outputs[0], skip_special_tokens=True) # Corrected Gradio Interface demo = gr.Interface(fn=generate_response, inputs="text", outputs="text") demo.launch()