import gradio as gr from huggingface_hub import InferenceClient """ For more information on huggingface_hub Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch() # Fine-Tuning GPT-2 on Hugging Face Spaces (Streaming 40GB Dataset, No Storage Issues) # Install required libraries # Install required libraries (Run this separately in a terminal or notebook cell) # !pip install transformers datasets peft accelerate bitsandbytes torch torchvision torchaudio gradio -q from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments from datasets import load_dataset from peft import LoraConfig, get_peft_model import torch # Authenticate Hugging Face from huggingface_hub import notebook_login notebook_login() # Load GPT-2 model and tokenizer model_name = "gpt2" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) # Load the OpenWebText dataset using streaming (No download required) # Custom Dataset (Predefined Q&A Pairs for Project Expo) custom_data = [ {"prompt": "Who are you?", "response": "I am Eva, a virtual voice assistant."}, {"prompt": "What is your name?", "response": "I am Eva, how can I help you?"}, {"prompt": "What can you do?", "response": "I can assist with answering questions, searching the web, and much more!"}, {"prompt": "Who invented the computer?", "response": "Charles Babbage is known as the father of the computer."}, {"prompt": "Tell me a joke.", "response": "Why don’t scientists trust atoms? Because they make up everything!"}, {"prompt": "Who is the Prime Minister of India?", "response": "The current Prime Minister of India is Narendra Modi."}, {"prompt": "Who created you?", "response": "I was created by an expert team specializing in AI fine-tuning and web development."} ] # Convert custom dataset to Hugging Face Dataset dataset_custom = load_dataset("json", data_files={"train": custom_data}) # Merge with OpenWebText dataset dataset = load_dataset("Skylion007/openwebtext", split="train[:50%]") # Load 5% to avoid streaming issues # Tokenization function def tokenize_function(examples): return tokenizer(examples["text"], truncation=True, padding="max_length", max_length=512) tokenized_datasets = dataset.map(tokenize_function, batched=True) # Apply LoRA for efficient fine-tuning lora_config = LoraConfig( r=8, lora_alpha=32, lora_dropout=0.05, bias="none", target_modules=["c_attn", "c_proj"] # Apply LoRA to attention layers ) model = get_peft_model(model, lora_config) # Enable gradient checkpointing to reduce memory usage model.gradient_checkpointing_enable() # Training arguments training_args = TrainingArguments( output_dir="gpt2_finetuned", auto_find_batch_size=True, gradient_accumulation_steps=4, learning_rate=5e-5, num_train_epochs=3, save_strategy="epoch", logging_dir="logs", bf16=True, push_to_hub=True ) # Trainer setup trainer = Trainer( model=model, args=training_args, train_dataset=tokenized_datasets ) # Start fine-tuning trainer.train() # Save and push the model to Hugging Face Hub trainer.save_model("gpt2_finetuned") tokenizer.save_pretrained("gpt2_finetuned") trainer.push_to_hub() # Deploy as Gradio Interface def generate_response(prompt): inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(**inputs, max_length=100) return tokenizer.decode(outputs[0], skip_special_tokens=True) demo = gr.Interface(fn=generate_response, inputs="text", outputs="text") demo.launch(share=True)