coIde / app.py
Falln87's picture
Update app.py
6c06d27 verified
import streamlit as st
import torch
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
# Load the Starcoder2 model and tokenizer
model_name = "Bigcode/starcoder2"
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
def code_complete(prompt, max_length=256):
"""
Generate code completion suggestions for the given prompt.
Args:
prompt (str): The incomplete code snippet.
max_length (int, optional): The maximum length of the generated code. Defaults to 256.
Returns:
list: A list of code completion suggestions.
"""
# Tokenize the input prompt
inputs = tokenizer.encode_plus(prompt,
add_special_tokens=True,
max_length=max_length,
padding="max_length",
truncation=True,
return_attention_mask=True,
return_tensors="pt")
# Generate code completion suggestions
outputs = model.generate(inputs["input_ids"],
attention_mask=inputs["attention_mask"],
max_length=max_length)
# Decode the generated code
suggestions = []
for output in outputs:
decoded_code = tokenizer.decode(output, skip_special_tokens=True)
suggestions.append(decoded_code)
return suggestions
def code_fix(code):
"""
Fix errors in the given code snippet.
Args:
code (str): The code snippet with errors.
Returns:
str: The corrected code snippet.
"""
# Tokenize the input code
inputs = tokenizer.encode_plus(code,
add_special_tokens=True,
max_length=512,
padding="max_length",
truncation=True,
return_attention_mask=True,
return_tensors="pt")
# Generate corrected code
outputs = model.generate(inputs["input_ids"],
attention_mask=inputs["attention_mask"],
max_length=512)
# Decode the generated code
corrected_code = tokenizer.decode(outputs[0], skip_special_tokens=True)
return corrected_code
def text_to_code(text, max_length=256):
"""
Generate code from a natural language description.
Args:
text (str): The natural language description of the code.
max_length (int, optional): The maximum length of the generated code. Defaults to 256.
Returns:
str: The generated code.
"""
# Tokenize the input text
inputs = tokenizer.encode_plus(text,
add_special_tokens=True,
max_length=max_length,
padding="max_length",
truncation=True,
return_attention_mask=True,
return_tensors="pt")
# Generate code from the input text
outputs = model.generate(inputs["input_ids"],
attention_mask=inputs["attention_mask"],
max_length=max_length)
# Decode the generated code
generated_code = tokenizer.decode(outputs[0], skip_special_tokens=True)
return generated_code
# Create a Streamlit app
st.title("Codebot")
st.write("Welcome to the Codebot! You can use this app to generate code completions, fix errors in your code, or generate code from a natural language description.")
# Create a tab for code completion
code_completion_tab = st.tab("Code Completion")
with code_completion_tab:
st.write("Enter an incomplete code snippet:")
prompt_input = st.text_input("Prompt:", value="")
generate_button = st.button("Generate Completions")
if generate_button:
completions = code_complete(prompt_input)
st.write("Code completions:")
for i, completion in enumerate(completions):
st.write(f"{i+1}. {completion}")
# Create a tab for code fixing
code_fixing_tab = st.tab("Code Fixing")
with code_fixing_tab:
st.write("Enter a code snippet with errors:")
code_input = st.text_area("Code:", height=300)
fix_button = st.button("Fix Errors")
if fix_button:
corrected_code = code_fix(code_input)
st.write("Corrected code:")
st.code(corrected_code)
# Create a tab for text-to-code
text_to_code_tab = st.tab("Text-to-Code")
with text_to_code_tab:
st.write("Enter a natural language description of the code:")
text_input = st.text_input("Description:", value="")
generate_button = st.button("Generate Code")
if generate_button:
generated_code = text_to_code(text_input)
st.write("Generated code:")
st.code(generated_code)
# Run the Streamlit app
if __name__ == "__main__":
st.run()