Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
4 |
+
|
5 |
+
# Load the Starcoder2 model and tokenizer
|
6 |
+
model_name = "starcoder2"
|
7 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
9 |
+
|
10 |
+
def code_complete(prompt, max_length=256):
|
11 |
+
"""
|
12 |
+
Generate code completion suggestions for the given prompt.
|
13 |
+
|
14 |
+
Args:
|
15 |
+
prompt (str): The incomplete code snippet.
|
16 |
+
max_length (int, optional): The maximum length of the generated code. Defaults to 256.
|
17 |
+
|
18 |
+
Returns:
|
19 |
+
list: A list of code completion suggestions.
|
20 |
+
"""
|
21 |
+
# Tokenize the input prompt
|
22 |
+
inputs = tokenizer.encode_plus(prompt,
|
23 |
+
add_special_tokens=True,
|
24 |
+
max_length=max_length,
|
25 |
+
padding="max_length",
|
26 |
+
truncation=True,
|
27 |
+
return_attention_mask=True,
|
28 |
+
return_tensors="pt")
|
29 |
+
|
30 |
+
# Generate code completion suggestions
|
31 |
+
outputs = model.generate(inputs["input_ids"],
|
32 |
+
attention_mask=inputs["attention_mask"],
|
33 |
+
max_length=max_length)
|
34 |
+
|
35 |
+
# Decode the generated code
|
36 |
+
suggestions = []
|
37 |
+
for output in outputs:
|
38 |
+
decoded_code = tokenizer.decode(output, skip_special_tokens=True)
|
39 |
+
suggestions.append(decoded_code)
|
40 |
+
|
41 |
+
return suggestions
|
42 |
+
|
43 |
+
def code_fix(code):
|
44 |
+
"""
|
45 |
+
Fix errors in the given code snippet.
|
46 |
+
|
47 |
+
Args:
|
48 |
+
code (str): The code snippet with errors.
|
49 |
+
|
50 |
+
Returns:
|
51 |
+
str: The corrected code snippet.
|
52 |
+
"""
|
53 |
+
# Tokenize the input code
|
54 |
+
inputs = tokenizer.encode_plus(code,
|
55 |
+
add_special_tokens=True,
|
56 |
+
max_length=512,
|
57 |
+
padding="max_length",
|
58 |
+
truncation=True,
|
59 |
+
return_attention_mask=True,
|
60 |
+
return_tensors="pt")
|
61 |
+
|
62 |
+
# Generate corrected code
|
63 |
+
outputs = model.generate(inputs["input_ids"],
|
64 |
+
attention_mask=inputs["attention_mask"],
|
65 |
+
max_length=512)
|
66 |
+
|
67 |
+
# Decode the generated code
|
68 |
+
corrected_code = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
69 |
+
|
70 |
+
return corrected_code
|
71 |
+
|
72 |
+
def text_to_code(text, max_length=256):
|
73 |
+
"""
|
74 |
+
Generate code from a natural language description.
|
75 |
+
|
76 |
+
Args:
|
77 |
+
text (str): The natural language description of the code.
|
78 |
+
max_length (int, optional): The maximum length of the generated code. Defaults to 256.
|
79 |
+
|
80 |
+
Returns:
|
81 |
+
str: The generated code.
|
82 |
+
"""
|
83 |
+
# Tokenize the input text
|
84 |
+
inputs = tokenizer.encode_plus(text,
|
85 |
+
add_special_tokens=True,
|
86 |
+
max_length=max_length,
|
87 |
+
padding="max_length",
|
88 |
+
truncation=True,
|
89 |
+
return_attention_mask=True,
|
90 |
+
return_tensors="pt")
|
91 |
+
|
92 |
+
# Generate code from the input text
|
93 |
+
outputs = model.generate(inputs["input_ids"],
|
94 |
+
attention_mask=inputs["attention_mask"],
|
95 |
+
max_length=max_length)
|
96 |
+
|
97 |
+
# Decode the generated code
|
98 |
+
generated_code = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
99 |
+
|
100 |
+
return generated_code
|
101 |
+
|
102 |
+
# Create a Streamlit app
|
103 |
+
st.title("Codebot")
|
104 |
+
st.write("Welcome to the Codebot! You can use this app to generate code completions, fix errors in your code, or generate code from a natural language description.")
|
105 |
+
|
106 |
+
# Create a tab for code completion
|
107 |
+
code_completion_tab = st.tab("Code Completion")
|
108 |
+
|
109 |
+
with code_completion_tab:
|
110 |
+
st.write("Enter an incomplete code snippet:")
|
111 |
+
prompt_input = st.text_input("Prompt:", value="")
|
112 |
+
generate_button = st.button("Generate Completions")
|
113 |
+
|
114 |
+
if generate_button:
|
115 |
+
completions = code_complete(prompt_input)
|
116 |
+
st.write("Code completions:")
|
117 |
+
for i, completion in enumerate(completions):
|
118 |
+
st.write(f"{i+1}. {completion}")
|
119 |
+
|
120 |
+
# Create a tab for code fixing
|
121 |
+
code_fixing_tab = st.tab("Code Fixing")
|
122 |
+
|
123 |
+
with code_fixing_tab:
|
124 |
+
st.write("Enter a code snippet with errors:")
|
125 |
+
code_input = st.text_area("Code:", height=300)
|
126 |
+
fix_button = st.button("Fix Errors")
|
127 |
+
|
128 |
+
if fix_button:
|
129 |
+
corrected_code = code_fix(code_input)
|
130 |
+
st.write("Corrected code:")
|
131 |
+
st.code(corrected_code)
|
132 |
+
|
133 |
+
# Create a tab for text-to-code
|
134 |
+
text_to_code_tab = st.tab("Text-to-Code")
|
135 |
+
|
136 |
+
with text_to_code_tab:
|
137 |
+
st.write("Enter a natural language description of the code:")
|
138 |
+
text_input = st.text_input("Description:", value="")
|
139 |
+
generate_button = st.button("Generate Code")
|
140 |
+
|
141 |
+
if generate_button:
|
142 |
+
generated_code = text_to_code(text_input)
|
143 |
+
st.write("Generated code:")
|
144 |
+
st.code(generated_code)
|
145 |
+
|
146 |
+
# Run the Streamlit app
|
147 |
+
if __name__ == "__main__":
|
148 |
+
st.run()
|