R1-Onevision / app.py
Fancy-MLLM's picture
Update app.py
4b1b73d verified
raw
history blame
2.4 kB
import gradio as gr
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info
import torch
from PIL import Image
# 指定模型路径
local_path = "Fancy-MLLM/R1-OneVision-7B"
# 加载模型和处理器
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
local_path, torch_dtype="auto", device_map="cpu"
)
processor = AutoProcessor.from_pretrained(local_path)
# 处理输入并生成输出
def generate_output(image, text):
if image is None:
return "Error: No image uploaded!"
# 处理输入数据
messages = [
{
"role": "user",
"content": [
{"type": "image", "image": image, 'min_pixels': 1003520, 'max_pixels': 12845056},
{"type": "text", "text": text},
],
}
]
# 生成模型输入
text_input = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text_input],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to(model.device) # 适配 CPU/GPU
# **同步执行**,避免线程问题
output_tokens = model.generate(
**inputs,
max_new_tokens=4096,
top_p=0.001,
top_k=1,
temperature=0.01,
repetition_penalty=1.0,
)
# 解析输出
generated_text = processor.batch_decode(output_tokens, skip_special_tokens=True)[0]
return generated_text # 直接返回结果
# UI 组件
with gr.Blocks() as demo:
gr.HTML("""<center><font size=8>🦖 R1-OneVision Demo</center>""")
with gr.Row():
with gr.Column():
input_image = gr.Image(type="pil", label="Upload") # **改回 PIL 处理**
input_text = gr.Textbox(label="Input your question")
with gr.Row():
clear_btn = gr.ClearButton([input_image, input_text])
submit_btn = gr.Button("Submit", variant="primary")
with gr.Column():
output_text = gr.Markdown(elem_id="qwen-md", container=True)
# 绑定事件,去掉 queue=True
submit_btn.click(fn=generate_output, inputs=[input_image, input_text], outputs=output_text)
demo.launch(share=True)