Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
5be3d23
1
Parent(s):
c55296e
Add application file
Browse files- qwen_gradio.py +63 -0
qwen_gradio.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
|
3 |
+
from qwen_vl_utils import process_vision_info
|
4 |
+
import torch
|
5 |
+
|
6 |
+
# Specify the local cache path for models
|
7 |
+
local_path = "/root/.cache/huggingface/hub/models--Qwen--Qwen2-VL-7B-Instruct/snapshots/a28a094eb66a9f2ac70eef346f040d8a79977472"
|
8 |
+
|
9 |
+
# Load model and processor
|
10 |
+
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
11 |
+
local_path, torch_dtype="auto", device_map="auto"
|
12 |
+
)
|
13 |
+
|
14 |
+
processor = AutoProcessor.from_pretrained(local_path)
|
15 |
+
|
16 |
+
# Function to process image and text and generate the output
|
17 |
+
def generate_output(image, text, button_click):
|
18 |
+
# Prepare input data
|
19 |
+
messages = [
|
20 |
+
{
|
21 |
+
"role": "user",
|
22 |
+
"content": [
|
23 |
+
{"type": "image", "image": image},
|
24 |
+
{"type": "text", "text": text},
|
25 |
+
],
|
26 |
+
}
|
27 |
+
]
|
28 |
+
|
29 |
+
# Prepare inputs for the model
|
30 |
+
text_input = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
31 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
32 |
+
inputs = processor(
|
33 |
+
text=[text_input],
|
34 |
+
images=image_inputs,
|
35 |
+
videos=video_inputs,
|
36 |
+
padding=True,
|
37 |
+
return_tensors="pt",
|
38 |
+
)
|
39 |
+
inputs = inputs.to("cuda")
|
40 |
+
|
41 |
+
# Generate the output
|
42 |
+
generated_ids = model.generate(**inputs, max_new_tokens=128)
|
43 |
+
generated_ids_trimmed = [
|
44 |
+
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
45 |
+
]
|
46 |
+
output_text = processor.batch_decode(
|
47 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
48 |
+
)
|
49 |
+
return output_text[0]
|
50 |
+
|
51 |
+
# Create Gradio interface
|
52 |
+
iface = gr.Interface(
|
53 |
+
fn=generate_output,
|
54 |
+
inputs=[
|
55 |
+
gr.Image(type="pil", label="Upload Image"),
|
56 |
+
gr.Textbox(lines=2, placeholder="Enter a question related to the image", label="Input Text"),
|
57 |
+
|
58 |
+
],
|
59 |
+
outputs=gr.Textbox(label="Model Output"),
|
60 |
+
)
|
61 |
+
|
62 |
+
# Launch the Gradio interface
|
63 |
+
iface.launch()
|