Fancy-MLLM commited on
Commit
5be3d23
·
1 Parent(s): c55296e

Add application file

Browse files
Files changed (1) hide show
  1. qwen_gradio.py +63 -0
qwen_gradio.py ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
3
+ from qwen_vl_utils import process_vision_info
4
+ import torch
5
+
6
+ # Specify the local cache path for models
7
+ local_path = "/root/.cache/huggingface/hub/models--Qwen--Qwen2-VL-7B-Instruct/snapshots/a28a094eb66a9f2ac70eef346f040d8a79977472"
8
+
9
+ # Load model and processor
10
+ model = Qwen2VLForConditionalGeneration.from_pretrained(
11
+ local_path, torch_dtype="auto", device_map="auto"
12
+ )
13
+
14
+ processor = AutoProcessor.from_pretrained(local_path)
15
+
16
+ # Function to process image and text and generate the output
17
+ def generate_output(image, text, button_click):
18
+ # Prepare input data
19
+ messages = [
20
+ {
21
+ "role": "user",
22
+ "content": [
23
+ {"type": "image", "image": image},
24
+ {"type": "text", "text": text},
25
+ ],
26
+ }
27
+ ]
28
+
29
+ # Prepare inputs for the model
30
+ text_input = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
31
+ image_inputs, video_inputs = process_vision_info(messages)
32
+ inputs = processor(
33
+ text=[text_input],
34
+ images=image_inputs,
35
+ videos=video_inputs,
36
+ padding=True,
37
+ return_tensors="pt",
38
+ )
39
+ inputs = inputs.to("cuda")
40
+
41
+ # Generate the output
42
+ generated_ids = model.generate(**inputs, max_new_tokens=128)
43
+ generated_ids_trimmed = [
44
+ out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
45
+ ]
46
+ output_text = processor.batch_decode(
47
+ generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
48
+ )
49
+ return output_text[0]
50
+
51
+ # Create Gradio interface
52
+ iface = gr.Interface(
53
+ fn=generate_output,
54
+ inputs=[
55
+ gr.Image(type="pil", label="Upload Image"),
56
+ gr.Textbox(lines=2, placeholder="Enter a question related to the image", label="Input Text"),
57
+
58
+ ],
59
+ outputs=gr.Textbox(label="Model Output"),
60
+ )
61
+
62
+ # Launch the Gradio interface
63
+ iface.launch()