Spaces:
Running
on
Zero
Running
on
Zero
Upload app.py
Browse files
app.py
CHANGED
@@ -1,28 +1,29 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
|
|
|
3 |
from qwen_vl_utils import process_vision_info
|
4 |
import torch
|
|
|
5 |
|
6 |
# Specify the local cache path for models
|
7 |
-
local_path = "
|
8 |
|
9 |
# Load model and processor
|
10 |
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
11 |
-
local_path, torch_dtype="auto", device_map="
|
12 |
)
|
|
|
13 |
|
14 |
processor = AutoProcessor.from_pretrained(local_path)
|
15 |
|
16 |
-
print("load successfully")
|
17 |
# Function to process image and text and generate the output
|
18 |
-
@torch.inference_mode()
|
19 |
def generate_output(image, text, button_click):
|
20 |
# Prepare input data
|
21 |
messages = [
|
22 |
{
|
23 |
"role": "user",
|
24 |
"content": [
|
25 |
-
{"type": "image", "image": image},
|
26 |
{"type": "text", "text": text},
|
27 |
],
|
28 |
}
|
@@ -30,6 +31,8 @@ def generate_output(image, text, button_click):
|
|
30 |
|
31 |
# Prepare inputs for the model
|
32 |
text_input = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
|
|
|
|
33 |
image_inputs, video_inputs = process_vision_info(messages)
|
34 |
inputs = processor(
|
35 |
text=[text_input],
|
@@ -40,26 +43,116 @@ def generate_output(image, text, button_click):
|
|
40 |
)
|
41 |
inputs = inputs.to("cuda")
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
50 |
)
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
-
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor, TextIteratorStreamer
|
3 |
+
from threading import Thread
|
4 |
from qwen_vl_utils import process_vision_info
|
5 |
import torch
|
6 |
+
import time
|
7 |
|
8 |
# Specify the local cache path for models
|
9 |
+
local_path = "Fancy-MLLM/R1-OneVision/R1-OneVision/R1-OneVison-7B"
|
10 |
|
11 |
# Load model and processor
|
12 |
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
13 |
+
local_path, torch_dtype="auto", device_map="cpu"
|
14 |
)
|
15 |
+
model.cuda().eval()
|
16 |
|
17 |
processor = AutoProcessor.from_pretrained(local_path)
|
18 |
|
|
|
19 |
# Function to process image and text and generate the output
|
|
|
20 |
def generate_output(image, text, button_click):
|
21 |
# Prepare input data
|
22 |
messages = [
|
23 |
{
|
24 |
"role": "user",
|
25 |
"content": [
|
26 |
+
{"type": "image", "image": image, 'min_pixels': 1003520, 'max_pixels': 12845056},
|
27 |
{"type": "text", "text": text},
|
28 |
],
|
29 |
}
|
|
|
31 |
|
32 |
# Prepare inputs for the model
|
33 |
text_input = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
34 |
+
# print(text_input)
|
35 |
+
# import pdb; pdb.set_trace()
|
36 |
image_inputs, video_inputs = process_vision_info(messages)
|
37 |
inputs = processor(
|
38 |
text=[text_input],
|
|
|
43 |
)
|
44 |
inputs = inputs.to("cuda")
|
45 |
|
46 |
+
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
47 |
+
generation_kwargs = dict(
|
48 |
+
**inputs,
|
49 |
+
streamer=streamer,
|
50 |
+
max_new_tokens=4096,
|
51 |
+
top_p=0.001,
|
52 |
+
top_k=1,
|
53 |
+
temperature=0.01,
|
54 |
+
repetition_penalty=1.0,
|
55 |
)
|
56 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
57 |
+
thread.start()
|
58 |
+
generated_text = ''
|
59 |
+
|
60 |
+
try:
|
61 |
+
for new_text in streamer:
|
62 |
+
generated_text += new_text
|
63 |
+
yield f"‎{generated_text}"
|
64 |
+
# print(f"Current text: {generated_text}") # 调试输出
|
65 |
+
# yield generated_text # 直接输出原始文本
|
66 |
+
except Exception as e:
|
67 |
+
print(f"Error: {e}")
|
68 |
+
yield f"Error occurred: {str(e)}"
|
69 |
|
70 |
+
Css = """
|
71 |
+
#output-markdown {
|
72 |
+
overflow-y: auto;
|
73 |
+
white-space: pre-wrap;
|
74 |
+
word-wrap: break-word;
|
75 |
+
}
|
76 |
+
|
77 |
+
#output-markdown .math {
|
78 |
+
overflow-x: auto;
|
79 |
+
max-width: 100%;
|
80 |
+
}
|
81 |
+
.markdown-text {
|
82 |
+
white-space: pre-wrap;
|
83 |
+
word-wrap: break-word;
|
84 |
+
}
|
85 |
+
#qwen-md .katex-display { display: inline; }
|
86 |
+
#qwen-md .katex-display>.katex { display: inline; }
|
87 |
+
#qwen-md .katex-display>.katex>.katex-html { display: inline; }
|
88 |
+
"""
|
89 |
+
|
90 |
+
with gr.Blocks(css=Css) as demo:
|
91 |
+
gr.HTML("""<center><font size=8>🦖 R1-Onevision Demo</center>""")
|
92 |
|
93 |
+
with gr.Row():
|
94 |
+
with gr.Column():
|
95 |
+
input_image = gr.Image(type="pil", label="Upload"),
|
96 |
+
input_text = gr.Textbox(label="input your question")
|
97 |
+
with gr.Row():
|
98 |
+
with gr.Column():
|
99 |
+
clear_btn = gr.ClearButton([*input_image, input_text])
|
100 |
+
with gr.Column():
|
101 |
+
submit_btn = gr.Button("Submit", variant="primary")
|
102 |
+
|
103 |
+
gr.Examples(
|
104 |
+
examples=[
|
105 |
+
["20250208-205626.jpeg", "How many plums (see the picture) weigh as much as an apple?"],
|
106 |
+
["38.jpg", "Each of the digits 2, 3, 4 and 5 will be placed in a square. Then there will be two numbers, which will be added together. What is the biggest number that they could make?"],
|
107 |
+
["64.jpg", "Four of the numbers 1,3,4,5 and 7 are written into the boxes so that the calculation is correct.\nWhich number was not used?"],
|
108 |
+
],
|
109 |
+
inputs=[input_image[0], input_text],
|
110 |
+
label="Example Inputs"
|
111 |
+
)
|
112 |
+
with gr.Column():
|
113 |
+
output_text = gr.Markdown(
|
114 |
+
label="Generated Response",
|
115 |
+
max_height="80vh",
|
116 |
+
min_height="50vh",
|
117 |
+
container=True,
|
118 |
+
latex_delimiters=[{
|
119 |
+
"left": "\\(",
|
120 |
+
"right": "\\)",
|
121 |
+
"display": True
|
122 |
+
}, {
|
123 |
+
"left": "\\begin\{equation\}",
|
124 |
+
"right": "\\end\{equation\}",
|
125 |
+
"display": True
|
126 |
+
}, {
|
127 |
+
"left": "\\begin\{align\}",
|
128 |
+
"right": "\\end\{align\}",
|
129 |
+
"display": True
|
130 |
+
}, {
|
131 |
+
"left": "\\begin\{alignat\}",
|
132 |
+
"right": "\\end\{alignat\}",
|
133 |
+
"display": True
|
134 |
+
}, {
|
135 |
+
"left": "\\begin\{gather\}",
|
136 |
+
"right": "\\end\{gather\}",
|
137 |
+
"display": True
|
138 |
+
}, {
|
139 |
+
"left": "\\begin\{CD\}",
|
140 |
+
"right": "\\end\{CD\}",
|
141 |
+
"display": True
|
142 |
+
}, {
|
143 |
+
"left": "\\[",
|
144 |
+
"right": "\\]",
|
145 |
+
"display": True
|
146 |
+
}],
|
147 |
+
elem_id="qwen-md")
|
148 |
+
|
149 |
+
|
150 |
+
|
151 |
+
submit_btn.click(
|
152 |
+
fn=generate_output,
|
153 |
+
inputs=[*input_image, input_text],
|
154 |
+
outputs=output_text,
|
155 |
+
queue=True
|
156 |
+
)
|
157 |
+
demo.launch(share=True)
|
158 |
+
|