import gradio as gr from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor from qwen_vl_utils import process_vision_info import torch # Specify the local cache path for models local_path = "Qwen/Qwen2.5-VL-7B-Instruct" # Load model and processor model = Qwen2_5_VLForConditionalGeneration.from_pretrained( local_path, torch_dtype="auto", device_map="auto" ) processor = AutoProcessor.from_pretrained(local_path) # Function to process image and text and generate the output @torch.inference_mode() @spaces.GPU(duration=120) # Specify a duration to avoid timeout def generate_output(image, text, button_click): # Prepare input data messages = [ { "role": "user", "content": [ {"type": "image", "image": image}, {"type": "text", "text": text}, ], } ] # Prepare inputs for the model text_input = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) image_inputs, video_inputs = process_vision_info(messages) inputs = processor( text=[text_input], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ) inputs = inputs.to("cuda") # Generate the output generated_ids = model.generate(**inputs, max_new_tokens=128) generated_ids_trimmed = [ out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] output_text = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False ) return output_text[0] # Create Gradio interface iface = gr.Interface( fn=generate_output, inputs=[ gr.Image(type="pil", label="Upload Image"), gr.Textbox(lines=2, placeholder="Enter a question related to the image", label="Input Text"), ], outputs=gr.Textbox(label="Model Output"), ) # Launch the Gradio interface iface.launch()