Spaces:
Running
on
Zero
Running
on
Zero
import subprocess | |
subprocess.run(["pip", "install", "fastapi==0.108.0"]) | |
import gradio as gr | |
from UniVAD.tools import process_image | |
subprocess.run(["wget", "-q","https://huggingface.co/xinyu1205/recognize-anything-plus-model/resolve/main/ram_plus_swin_large_14m.pth"], check=True) | |
subprocess.run(["wget", "-q","https://huggingface.co/lkeab/hq-sam/resolve/main/sam_hq_vit_h.pth"], check=True) | |
from transformers import AutoModelForZeroShotObjectDetection, AutoProcessor | |
import torch | |
import torchvision.transforms as transforms | |
from UniVAD.univad import UniVAD | |
from ram.models import ram_plus | |
from UniVAD.models.segment_anything import ( | |
sam_hq_model_registry, | |
SamPredictor, | |
) | |
import spaces | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
image_size = 448 | |
univad_model = UniVAD(image_size=image_size).to(device) | |
transform = transforms.Compose( | |
[ | |
transforms.Resize((image_size, image_size)), | |
transforms.ToTensor(), | |
] | |
) | |
ram_model = ram_plus( | |
pretrained="./ram_plus_swin_large_14m.pth", | |
image_size=384, | |
vit="swin_l", | |
) | |
ram_model.eval() | |
ram_model = ram_model.to(device) | |
grounding_processor = AutoProcessor.from_pretrained("IDEA-Research/grounding-dino-tiny") | |
grounding_model = AutoModelForZeroShotObjectDetection.from_pretrained("IDEA-Research/grounding-dino-tiny").to("cuda") | |
sam = sam_hq_model_registry["vit_h"]("./sam_hq_vit_h.pth").to(device) | |
sam_predictor = SamPredictor(sam) | |
def preprocess_image(img): | |
return img.resize((448, 448)) | |
def update_image(image): | |
if image is not None: | |
return preprocess_image(image) | |
def ad(image_pil, normal_image, box_threshold, text_threshold, text_prompt, background_prompt, cluster_num): | |
return process_image(image_pil, normal_image, box_threshold, text_threshold, sam_predictor, grounding_model, univad_model, ram_model, text_prompt, background_prompt, cluster_num, image_size, grounding_processor) | |
with gr.Blocks() as demo: | |
gr.HTML("""<h1 align="center" style='margin-top: 30px;'>Demo of UniVAD</h1>""") | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
gr.Markdown("### Upload normal image here for reference.") | |
with gr.Row(): | |
normal_img = gr.Image(type="pil", label="Normal Image", value=None, height=475, width=440) | |
normal_img.change(fn=update_image, inputs=normal_img, outputs=normal_img) | |
with gr.Row(): | |
normal_mask = gr.Image(type="filepath", label="Normal Component Mask", value=None, height=450, interactive=False) | |
with gr.Row(): | |
clearBtn = gr.Button("Clear", variant="secondary") | |
with gr.Column(): | |
with gr.Row(): | |
gr.Markdown("### Upload query image here for anomaly detection.") | |
with gr.Row(): | |
query_img = gr.Image(type="pil", label="Query Image", value=None, height=475, width=440) | |
query_img.change(fn=update_image, inputs=query_img, outputs=query_img) | |
with gr.Row(): | |
query_mask = gr.Image(type="filepath", label="Query Component Mask", value=None, height=450) | |
with gr.Row(): | |
submitBtn = gr.Button("Submit", variant="primary") | |
with gr.Column(): | |
with gr.Row(): | |
gr.Markdown("### Settings:") | |
with gr.Row(): | |
box_threshold = gr.Slider(minimum=0.0, maximum=1.0, value=0.25, label="Box Threshold") | |
with gr.Row(): | |
text_threshold = gr.Slider(minimum=0.0, maximum=1.0, value=0.25, label="Text Threshold") | |
with gr.Row(): | |
text_prompt = gr.Textbox(label="Specify what should be in the image. Separate them with periods (.)", placeholder="(optional)") | |
with gr.Row(): | |
background_prompt = gr.Textbox(label="Specify what should be IGNORED in the image. Separate them with periods (.)", placeholder="(optional)") | |
with gr.Row(): | |
cluster_num = gr.Textbox(label="Number of Clusters", placeholder="(optional)") | |
with gr.Row(): | |
anomaly_map_raw = gr.Image(type="filepath", label="Localizaiton Result", value=None, height=450) | |
with gr.Row(): | |
anomaly_score = gr.HTML(value="<span style='font-size: 30px;'>Detection Result:</span>") | |
gr.State() | |
submitBtn.click( | |
ad, [ | |
query_img, | |
normal_img, | |
box_threshold, | |
text_threshold, | |
text_prompt, | |
background_prompt, | |
cluster_num, | |
], [ | |
query_mask, | |
normal_mask, | |
anomaly_map_raw, | |
anomaly_score | |
], | |
show_progress=True | |
) | |
clearBtn.click( | |
lambda: (None, None, None, None, None, "<span style='font-size: 30px;'>Detection Result:</span>"), | |
outputs=[query_img, normal_img, query_mask, normal_mask, anomaly_map_raw, anomaly_score] | |
) | |
demo.queue().launch() | |