Spaces:
Runtime error
Runtime error
Delete app.py
Browse files
app.py
DELETED
@@ -1,75 +0,0 @@
|
|
1 |
-
pip install gradio PyMuPDF
|
2 |
-
|
3 |
-
import gradio as gr
|
4 |
-
from transformers import T5Tokenizer, MT5ForConditionalGeneration
|
5 |
-
import fitz # PyMuPDF
|
6 |
-
|
7 |
-
# Load the fine-tuned tokenizer and model
|
8 |
-
model_name = "fine-tuned-mt5"
|
9 |
-
new_tokenizer = T5Tokenizer.from_pretrained(model_name, clean_up_tokenization_spaces=True)
|
10 |
-
new_model = MT5ForConditionalGeneration.from_pretrained(model_name)
|
11 |
-
|
12 |
-
# Function to extract text from PDF using PyMuPDF
|
13 |
-
def extract_text_from_pdf(pdf_file):
|
14 |
-
text = ""
|
15 |
-
# Open the PDF file
|
16 |
-
with fitz.open(pdf_file) as doc:
|
17 |
-
for page in doc:
|
18 |
-
text += page.get_text() # Extract text from each page
|
19 |
-
return text
|
20 |
-
|
21 |
-
# Summarization function
|
22 |
-
def summarize_pdf(pdf_file, max_summary_length):
|
23 |
-
# Extract text from the PDF
|
24 |
-
input_text = extract_text_from_pdf(pdf_file)
|
25 |
-
|
26 |
-
# Tokenize the input to check length
|
27 |
-
tokenized_input = new_tokenizer.encode(input_text, return_tensors='pt')
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
try:
|
32 |
-
# Generate the summary
|
33 |
-
summary_ids = new_model.generate(
|
34 |
-
tokenized_input,
|
35 |
-
max_length=max_summary_length,
|
36 |
-
min_length=30,
|
37 |
-
num_beams=15,
|
38 |
-
repetition_penalty=5.0,
|
39 |
-
no_repeat_ngram_size=2
|
40 |
-
)
|
41 |
-
|
42 |
-
# Decode the generated summary
|
43 |
-
summary = new_tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
44 |
-
|
45 |
-
# Clean up the summary to remove unwanted tokens
|
46 |
-
cleaned_summary = ' '.join([token for token in summary.split() if not token.startswith('<extra_id_')]).strip()
|
47 |
-
|
48 |
-
# Ensure the summary ends with a complete sentence
|
49 |
-
if cleaned_summary:
|
50 |
-
last_period_index = cleaned_summary.rfind('.')
|
51 |
-
if last_period_index != -1 and last_period_index < len(cleaned_summary) - 1:
|
52 |
-
cleaned_summary = cleaned_summary[:last_period_index + 1]
|
53 |
-
else:
|
54 |
-
cleaned_summary = cleaned_summary.strip()
|
55 |
-
|
56 |
-
return cleaned_summary if cleaned_summary else "No valid summary generated."
|
57 |
-
|
58 |
-
except Exception as e:
|
59 |
-
return str(e) # Return the error message for debugging
|
60 |
-
|
61 |
-
# Define the Gradio interface
|
62 |
-
interface = gr.Interface(
|
63 |
-
fn=summarize_pdf,
|
64 |
-
inputs=[
|
65 |
-
gr.File(label="Upload PDF"),
|
66 |
-
gr.Slider(50, 300, step=10, label="Max summary length")
|
67 |
-
],
|
68 |
-
outputs="textbox", # A textbox for the output summary
|
69 |
-
title="PDF Text Summarizer",
|
70 |
-
description="Upload a PDF file to summarize its content."
|
71 |
-
)
|
72 |
-
|
73 |
-
# Launch the interface
|
74 |
-
# Launch the interface with debug mode enabled
|
75 |
-
interface.launch(debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|