Spaces:
Running
Running
Faran Fahandezh
commited on
Commit
·
3c5efcb
1
Parent(s):
044e99f
Add application file4
Browse files
house_diffusion/gaussian_diffusion.py
CHANGED
@@ -898,7 +898,8 @@ class GaussianDiffusion:
|
|
898 |
bin_target = bin_target * 256 #-> [0, 256]
|
899 |
bin_target = dec2bin(bin_target.permute([0,2,1]).round().int(), 8)
|
900 |
bin_target = bin_target.reshape([target.shape[0], target.shape[2], 16]).permute([0,2,1])
|
901 |
-
t_weights = (t<10).cuda().unsqueeze(1).unsqueeze(2)
|
|
|
902 |
t_weights = t_weights * (t_weights.shape[0]/max(1, t_weights.sum()))
|
903 |
bin_target[bin_target==0] = -1
|
904 |
assert model_output_bin.shape == bin_target.shape
|
|
|
898 |
bin_target = bin_target * 256 #-> [0, 256]
|
899 |
bin_target = dec2bin(bin_target.permute([0,2,1]).round().int(), 8)
|
900 |
bin_target = bin_target.reshape([target.shape[0], target.shape[2], 16]).permute([0,2,1])
|
901 |
+
# t_weights = (t<10).cuda().unsqueeze(1).unsqueeze(2)
|
902 |
+
t_weights = (t<10).unsqueeze(1).unsqueeze(2)
|
903 |
t_weights = t_weights * (t_weights.shape[0]/max(1, t_weights.sum()))
|
904 |
bin_target[bin_target==0] = -1
|
905 |
assert model_output_bin.shape == bin_target.shape
|
house_diffusion/transformer.py
CHANGED
@@ -77,7 +77,7 @@ class MultiHeadAttention(nn.Module):
|
|
77 |
q = q.transpose(1,2)
|
78 |
v = v.transpose(1,2)# calculate attention using function we will define next
|
79 |
#TODO
|
80 |
-
mask = mask.to('cuda:0')
|
81 |
scores = attention(q, k, v, self.d_k, mask, self.dropout)
|
82 |
# concatenate heads and put through final linear layer
|
83 |
concat = scores.transpose(1,2).contiguous().view(bs, -1, self.d_model)
|
@@ -232,8 +232,8 @@ class TransformerModel(nn.Module):
|
|
232 |
|
233 |
# Different input embeddings (Input, Time, Conditions)
|
234 |
#TODO---------------------------------------------------------------
|
235 |
-
x = x.to('cuda:0')
|
236 |
-
timesteps = timesteps.to(x.device)
|
237 |
# print(x.device)
|
238 |
|
239 |
time_emb = self.time_embed(timestep_embedding(timesteps, self.model_channels))
|
@@ -247,7 +247,7 @@ class TransformerModel(nn.Module):
|
|
247 |
else:
|
248 |
cond = th.cat((cond, kwargs[key]), 2)
|
249 |
#TODO
|
250 |
-
cond = cond.to('cuda:0')
|
251 |
cond_emb = self.condition_emb(cond.float())
|
252 |
|
253 |
# PositionalEncoding and DM model
|
|
|
77 |
q = q.transpose(1,2)
|
78 |
v = v.transpose(1,2)# calculate attention using function we will define next
|
79 |
#TODO
|
80 |
+
# mask = mask.to('cuda:0')
|
81 |
scores = attention(q, k, v, self.d_k, mask, self.dropout)
|
82 |
# concatenate heads and put through final linear layer
|
83 |
concat = scores.transpose(1,2).contiguous().view(bs, -1, self.d_model)
|
|
|
232 |
|
233 |
# Different input embeddings (Input, Time, Conditions)
|
234 |
#TODO---------------------------------------------------------------
|
235 |
+
# x = x.to('cuda:0')
|
236 |
+
# timesteps = timesteps.to(x.device)
|
237 |
# print(x.device)
|
238 |
|
239 |
time_emb = self.time_embed(timestep_embedding(timesteps, self.model_channels))
|
|
|
247 |
else:
|
248 |
cond = th.cat((cond, kwargs[key]), 2)
|
249 |
#TODO
|
250 |
+
# cond = cond.to('cuda:0')
|
251 |
cond_emb = self.condition_emb(cond.float())
|
252 |
|
253 |
# PositionalEncoding and DM model
|