Spaces:
Running
Running
Faran Fahandezh
commited on
Commit
·
ddbbf37
1
Parent(s):
51ae612
Add application file
Browse files- app.py +514 -0
- ckpt/model250000.pt +3 -0
- ckpt/readme.txt +0 -0
- color_guide.png +0 -0
- generated_svgs/readme.txt +0 -0
- house_diffusion/__init__.py +3 -0
- house_diffusion/__pycache__/__init__.cpython-311.pyc +0 -0
- house_diffusion/__pycache__/__init__.cpython-39.pyc +0 -0
- house_diffusion/__pycache__/dist_util.cpython-311.pyc +0 -0
- house_diffusion/__pycache__/dist_util.cpython-39.pyc +0 -0
- house_diffusion/__pycache__/fp16_util.cpython-311.pyc +0 -0
- house_diffusion/__pycache__/fp16_util.cpython-39.pyc +0 -0
- house_diffusion/__pycache__/gaussian_diffusion.cpython-311.pyc +0 -0
- house_diffusion/__pycache__/gaussian_diffusion.cpython-39.pyc +0 -0
- house_diffusion/__pycache__/logger.cpython-311.pyc +0 -0
- house_diffusion/__pycache__/logger.cpython-39.pyc +0 -0
- house_diffusion/__pycache__/losses.cpython-311.pyc +0 -0
- house_diffusion/__pycache__/losses.cpython-39.pyc +0 -0
- house_diffusion/__pycache__/nn.cpython-311.pyc +0 -0
- house_diffusion/__pycache__/nn.cpython-39.pyc +0 -0
- house_diffusion/__pycache__/resample.cpython-311.pyc +0 -0
- house_diffusion/__pycache__/resample.cpython-39.pyc +0 -0
- house_diffusion/__pycache__/respace.cpython-311.pyc +0 -0
- house_diffusion/__pycache__/respace.cpython-39.pyc +0 -0
- house_diffusion/__pycache__/rplanhg_datasets.cpython-311.pyc +0 -0
- house_diffusion/__pycache__/rplanhg_datasets.cpython-39.pyc +0 -0
- house_diffusion/__pycache__/script_util.cpython-311.pyc +0 -0
- house_diffusion/__pycache__/script_util.cpython-39.pyc +0 -0
- house_diffusion/__pycache__/train_util.cpython-311.pyc +0 -0
- house_diffusion/__pycache__/train_util.cpython-39.pyc +0 -0
- house_diffusion/__pycache__/transformer.cpython-311.pyc +0 -0
- house_diffusion/__pycache__/transformer.cpython-39.pyc +0 -0
- house_diffusion/__pycache__/transformer_models.cpython-39.pyc +0 -0
- house_diffusion/dist_util.py +94 -0
- house_diffusion/fp16_util.py +236 -0
- house_diffusion/gaussian_diffusion.py +1013 -0
- house_diffusion/logger.py +496 -0
- house_diffusion/losses.py +77 -0
- house_diffusion/nn.py +172 -0
- house_diffusion/resample.py +154 -0
- house_diffusion/respace.py +128 -0
- house_diffusion/rplanhg_datasets.py +620 -0
- house_diffusion/script_util.py +182 -0
- house_diffusion/train_util.py +416 -0
- house_diffusion/transformer.py +284 -0
- house_diffusion/transformer_models.py +228 -0
app.py
ADDED
@@ -0,0 +1,514 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import torch as th
|
5 |
+
from house_diffusion import dist_util
|
6 |
+
from house_diffusion.script_util import (
|
7 |
+
create_model_and_diffusion,
|
8 |
+
)
|
9 |
+
from PIL import Image
|
10 |
+
|
11 |
+
import io
|
12 |
+
import drawSvg as drawsvg
|
13 |
+
import cairosvg
|
14 |
+
from tqdm import tqdm
|
15 |
+
|
16 |
+
import webcolors
|
17 |
+
import tempfile
|
18 |
+
from pathlib import Path
|
19 |
+
import shutil
|
20 |
+
import os
|
21 |
+
|
22 |
+
|
23 |
+
ROOM_CLASS = {
|
24 |
+
'Living Room': 1, 'Kitchen': 2, 'Bedroom': 3, 'Bathroom': 4,
|
25 |
+
'Balcony': 5, 'Entrance': 6, 'Dining Room': 7, 'Study Room': 8,
|
26 |
+
'Storage': 10, 'Front Door': 11, 'Unknown': 13, 'Interior Door': 12
|
27 |
+
}
|
28 |
+
ROOM_CATEGORIES = {
|
29 |
+
'Living Room': 1, 'Kitchen': 2, 'Bedroom': 3, 'Bathroom': 4,
|
30 |
+
'Balcony': 5, 'Entrance': 6, 'Dining Room': 7, 'Study Room': 8,
|
31 |
+
'Storage': 10, 'Front Door': 11, 'Other': 13
|
32 |
+
}
|
33 |
+
|
34 |
+
|
35 |
+
def save_samples(
|
36 |
+
sample, ext, model_kwargs,
|
37 |
+
tmp_count, num_room_types,
|
38 |
+
# save_gif=False,
|
39 |
+
save_gif=True,
|
40 |
+
door_indices=[11, 12, 13], ID_COLOR=None,
|
41 |
+
is_syn=False, draw_graph=False, save_svg=False, metrics=False):
|
42 |
+
prefix = 'syn_' if is_syn else ''
|
43 |
+
graph_errors = []
|
44 |
+
|
45 |
+
print(sample.shape)
|
46 |
+
|
47 |
+
if not save_gif:
|
48 |
+
sample = sample[-1:]
|
49 |
+
for i in tqdm(range(sample.shape[1])):
|
50 |
+
resolution = 256
|
51 |
+
images = []
|
52 |
+
images2 = []
|
53 |
+
images3 = []
|
54 |
+
for k in range(sample.shape[0]):
|
55 |
+
draw_color = drawsvg.Drawing(resolution, resolution, displayInline=False)
|
56 |
+
draw_color.append(drawsvg.Rectangle(0, 0, resolution, resolution, fill='white'))
|
57 |
+
polys = []
|
58 |
+
types = []
|
59 |
+
for j, point in (enumerate(sample[k][i])):
|
60 |
+
if model_kwargs[f'{prefix}src_key_padding_mask'][i][j] == 1:
|
61 |
+
continue
|
62 |
+
point = point.cpu().data.numpy()
|
63 |
+
if j == 0:
|
64 |
+
poly = []
|
65 |
+
if j > 0 and (model_kwargs[f'{prefix}room_indices'][i, j] != model_kwargs[f'{prefix}room_indices'][
|
66 |
+
i, j - 1]).any():
|
67 |
+
polys.append(poly)
|
68 |
+
types.append(c)
|
69 |
+
poly = []
|
70 |
+
pred_center = False
|
71 |
+
if pred_center:
|
72 |
+
point = point / 2 + 1
|
73 |
+
point = point * resolution // 2
|
74 |
+
else:
|
75 |
+
point = point / 2 + 0.5
|
76 |
+
point = point * resolution
|
77 |
+
poly.append((point[0], point[1]))
|
78 |
+
c = np.argmax(model_kwargs[f'{prefix}room_types'][i][j - 1].cpu().numpy())
|
79 |
+
polys.append(poly)
|
80 |
+
types.append(c)
|
81 |
+
for poly, c in zip(polys, types):
|
82 |
+
if c in door_indices or c == 0:
|
83 |
+
continue
|
84 |
+
room_type = c
|
85 |
+
c = webcolors.hex_to_rgb(ID_COLOR[c])
|
86 |
+
draw_color.append(
|
87 |
+
drawsvg.Lines(*np.array(poly).flatten().tolist(), close=True, fill=ID_COLOR[room_type],
|
88 |
+
fill_opacity=1.0, stroke='black', stroke_width=1))
|
89 |
+
|
90 |
+
for poly, c in zip(polys, types):
|
91 |
+
if c not in door_indices:
|
92 |
+
continue
|
93 |
+
room_type = c
|
94 |
+
c = webcolors.hex_to_rgb(ID_COLOR[c])
|
95 |
+
|
96 |
+
# TODO --------------------------------------------------------------------------------------
|
97 |
+
# https://github.com/sakmalh/house_diffusion
|
98 |
+
line_lengths = [np.linalg.norm(np.array(poly[i]) - np.array(poly[(i + 1) % len(poly)])) for i in
|
99 |
+
range(len(poly))]
|
100 |
+
|
101 |
+
if metrics:
|
102 |
+
text_size = 5
|
103 |
+
for z, length in enumerate(line_lengths):
|
104 |
+
# Calculate the mid-point of the line segment
|
105 |
+
midpoint = ((poly[z][0] + poly[(z + 1) % len(poly)][0]) / 2,
|
106 |
+
(poly[z][1] + poly[(z + 1) % len(poly)][1]) / 2)
|
107 |
+
|
108 |
+
# Calculate x and y differences
|
109 |
+
x_diff = poly[z][0] - poly[(z + 1) % len(poly)][0]
|
110 |
+
y_diff = poly[z][1] - poly[(z + 1) % len(poly)][1]
|
111 |
+
|
112 |
+
# Determine text position adjustments based on differences
|
113 |
+
if int(y_diff) != 0:
|
114 |
+
if y_diff > 0:
|
115 |
+
text_x = midpoint[0] + text_size
|
116 |
+
text_y = midpoint[1]
|
117 |
+
|
118 |
+
draw_color.append(drawsvg.Line(
|
119 |
+
text_x, text_y + text_size, # Start point at the text label
|
120 |
+
poly[z][0] + text_size, poly[z][1], # End point at the polygon endpoint
|
121 |
+
stroke='black',
|
122 |
+
stroke_width=1
|
123 |
+
))
|
124 |
+
|
125 |
+
draw_color.append(drawsvg.Line(
|
126 |
+
text_x, text_y - text_size, # Start point at the text label
|
127 |
+
poly[(z + 1) % len(poly)][0] + text_size, poly[(z + 1) % len(poly)][1],
|
128 |
+
# End point at the polygon endpoint
|
129 |
+
stroke='black',
|
130 |
+
stroke_width=1
|
131 |
+
))
|
132 |
+
else:
|
133 |
+
text_x = midpoint[0] - text_size
|
134 |
+
text_y = midpoint[1]
|
135 |
+
|
136 |
+
draw_color.append(drawsvg.Line(
|
137 |
+
text_x, text_y - text_size, # Start point at the text label
|
138 |
+
poly[z][0] - text_size, poly[z][1], # End point at the polygon endpoint
|
139 |
+
stroke='black',
|
140 |
+
stroke_width=1
|
141 |
+
))
|
142 |
+
|
143 |
+
draw_color.append(drawsvg.Line(
|
144 |
+
text_x, text_y + text_size, # Start point at the text label
|
145 |
+
poly[(z + 1) % len(poly)][0] - text_size, poly[(z + 1) % len(poly)][1],
|
146 |
+
# End point at the polygon endpoint
|
147 |
+
stroke='black',
|
148 |
+
stroke_width=1
|
149 |
+
))
|
150 |
+
else:
|
151 |
+
if x_diff > 0:
|
152 |
+
text_x = midpoint[0]
|
153 |
+
text_y = midpoint[1] - text_size
|
154 |
+
|
155 |
+
draw_color.append(drawsvg.Line(
|
156 |
+
text_x + text_size, text_y, # Start point at the text label
|
157 |
+
poly[z][0], poly[z][1] - text_size, # End point at the polygon endpoint
|
158 |
+
stroke='black',
|
159 |
+
stroke_width=1
|
160 |
+
))
|
161 |
+
|
162 |
+
draw_color.append(drawsvg.Line(
|
163 |
+
text_x - text_size, text_y, # Start point at the text label
|
164 |
+
poly[(z + 1) % len(poly)][0], poly[(z + 1) % len(poly)][1] - text_size,
|
165 |
+
# End point at the polygon endpoint
|
166 |
+
stroke='black',
|
167 |
+
stroke_width=1
|
168 |
+
))
|
169 |
+
else:
|
170 |
+
text_x = midpoint[0]
|
171 |
+
text_y = midpoint[1] + text_size
|
172 |
+
|
173 |
+
draw_color.append(drawsvg.Line(
|
174 |
+
text_x - text_size, text_y, # Start point at the text label
|
175 |
+
poly[z][0], poly[z][1] + text_size, # End point at the polygon endpoint
|
176 |
+
stroke='black',
|
177 |
+
stroke_width=1
|
178 |
+
))
|
179 |
+
|
180 |
+
draw_color.append(drawsvg.Line(
|
181 |
+
text_x + text_size, text_y, # Start point at the text label
|
182 |
+
poly[(z + 1) % len(poly)][0], poly[(z + 1) % len(poly)][1] + text_size,
|
183 |
+
# End point at the polygon endpoint
|
184 |
+
stroke='black',
|
185 |
+
stroke_width=1
|
186 |
+
))
|
187 |
+
|
188 |
+
# Add the text label to the SVG
|
189 |
+
draw_color.append(
|
190 |
+
drawsvg.Text(
|
191 |
+
f'{int(abs(length))}', # Format the length to two decimal places
|
192 |
+
text_size,
|
193 |
+
text_x, text_y,
|
194 |
+
fill='black',
|
195 |
+
text_anchor='middle',
|
196 |
+
alignment_baseline='middle'
|
197 |
+
)
|
198 |
+
)
|
199 |
+
|
200 |
+
draw_color.append(
|
201 |
+
drawsvg.Lines(*np.array(poly).flatten().tolist(), close=True, fill=ID_COLOR[room_type],
|
202 |
+
fill_opacity=1.0, stroke='black', stroke_width=1))
|
203 |
+
|
204 |
+
if k == sample.shape[0] - 1 or True:
|
205 |
+
if save_svg:
|
206 |
+
# draw_color.saveSvg(f'outputs/{ext}/{tmp_count + i}c_{k}_{ext}.svg')
|
207 |
+
return draw_color
|
208 |
+
else:
|
209 |
+
Image.open(io.BytesIO(cairosvg.svg2png(draw_color.asSvg()))).save(
|
210 |
+
f'outputs/{ext}/{tmp_count + i}c_{ext}.png')
|
211 |
+
|
212 |
+
# if save_gif:
|
213 |
+
# imageio.mimwrite(f'outputs/gif/{tmp_count + i}.gif', images, fps=10, loop=1)
|
214 |
+
# imageio.mimwrite(f'outputs/gif/{tmp_count + i}_v2.gif', images2, fps=10, loop=1)
|
215 |
+
# imageio.mimwrite(f'outputs/gif/{tmp_count + i}_v3.gif', images3, fps=10, loop=1)
|
216 |
+
return graph_errors
|
217 |
+
|
218 |
+
|
219 |
+
def function_test(org_graphs, corners, room_type):
|
220 |
+
get_one_hot = lambda x, z: np.eye(z)[x]
|
221 |
+
max_num_points = 100
|
222 |
+
|
223 |
+
house = []
|
224 |
+
corner_bounds = []
|
225 |
+
num_points = 0
|
226 |
+
|
227 |
+
for i, room in enumerate(room_type):
|
228 |
+
# Adding conditions
|
229 |
+
num_room_corners = corners[i]
|
230 |
+
rtype = np.repeat(np.array([get_one_hot(room, 25)]), num_room_corners, 0)
|
231 |
+
room_index = np.repeat(np.array([get_one_hot(len(house) + 1, 32)]), num_room_corners, 0)
|
232 |
+
corner_index = np.array([get_one_hot(x, 32) for x in range(num_room_corners)])
|
233 |
+
# Src_key_padding_mask
|
234 |
+
padding_mask = np.repeat(1, num_room_corners)
|
235 |
+
padding_mask = np.expand_dims(padding_mask, 1)
|
236 |
+
# Generating corner bounds for attention masks
|
237 |
+
connections = np.array([[i, (i + 1) % num_room_corners] for i in range(num_room_corners)])
|
238 |
+
connections += num_points
|
239 |
+
corner_bounds.append([num_points, num_points + num_room_corners])
|
240 |
+
num_points += num_room_corners
|
241 |
+
room = np.concatenate((np.zeros([num_room_corners, 2]), rtype, corner_index, room_index,
|
242 |
+
padding_mask, connections), 1)
|
243 |
+
house.append(room)
|
244 |
+
|
245 |
+
house_layouts = np.concatenate(house, 0)
|
246 |
+
padding = np.zeros((max_num_points - len(house_layouts), 94))
|
247 |
+
gen_mask = np.ones((max_num_points, max_num_points))
|
248 |
+
gen_mask[:len(house_layouts), :len(house_layouts)] = 0
|
249 |
+
house_layouts = np.concatenate((house_layouts, padding), 0)
|
250 |
+
|
251 |
+
door_mask = np.ones((max_num_points, max_num_points))
|
252 |
+
self_mask = np.ones((max_num_points, max_num_points))
|
253 |
+
for i, room in enumerate(room_type):
|
254 |
+
if room == 1:
|
255 |
+
living_room_index = i
|
256 |
+
break
|
257 |
+
for i in range(len(corner_bounds)):
|
258 |
+
is_connected = False
|
259 |
+
for j in range(len(corner_bounds)):
|
260 |
+
if i == j:
|
261 |
+
self_mask[corner_bounds[i][0]:corner_bounds[i][1], corner_bounds[j][0]:corner_bounds[j][1]] = 0
|
262 |
+
elif any(np.equal([i, 1, j], org_graphs).all(1)) or any(np.equal([j, 1, i], org_graphs).all(1)):
|
263 |
+
door_mask[corner_bounds[i][0]:corner_bounds[i][1], corner_bounds[j][0]:corner_bounds[j][1]] = 0
|
264 |
+
is_connected = True
|
265 |
+
if not is_connected:
|
266 |
+
door_mask[corner_bounds[i][0]:corner_bounds[i][1],
|
267 |
+
corner_bounds[living_room_index][0]:corner_bounds[living_room_index][1]] = 0
|
268 |
+
|
269 |
+
syn_houses = house_layouts
|
270 |
+
syn_door_masks = door_mask
|
271 |
+
syn_self_masks = self_mask
|
272 |
+
syn_gen_masks = gen_mask
|
273 |
+
|
274 |
+
syn_graph = np.concatenate((org_graphs, np.zeros([200 - len(org_graphs), 3])), 0)
|
275 |
+
|
276 |
+
cond = {
|
277 |
+
'syn_door_mask': syn_door_masks,
|
278 |
+
'syn_self_mask': syn_self_masks,
|
279 |
+
'syn_gen_mask': syn_gen_masks,
|
280 |
+
'syn_room_types': syn_houses[:, 2:2 + 25],
|
281 |
+
'syn_corner_indices': syn_houses[:, 2 + 25:2 + 57],
|
282 |
+
'syn_room_indices': syn_houses[:, 2 + 57:2 + 89],
|
283 |
+
'syn_src_key_padding_mask': 1 - syn_houses[:, 2 + 89],
|
284 |
+
'syn_connections': syn_houses[:, 2 + 90:2 + 92],
|
285 |
+
'syn_graph': syn_graph,
|
286 |
+
}
|
287 |
+
|
288 |
+
return cond
|
289 |
+
|
290 |
+
|
291 |
+
def create_layout(graphs, corners, room_type, metrics=False, use_ddim=True, ddim_steps=100, num_samples=4):
|
292 |
+
model_path = "ckpt/model250000.pt"
|
293 |
+
steps = f"ddim{ddim_steps}"
|
294 |
+
args = {
|
295 |
+
"input_channels": 18,
|
296 |
+
"condition_channels": 89,
|
297 |
+
"num_channels": 512,
|
298 |
+
"out_channels": 2,
|
299 |
+
"dataset": "rplan",
|
300 |
+
"use_checkpoint": False,
|
301 |
+
"use_unet": False,
|
302 |
+
"learn_sigma": False,
|
303 |
+
"diffusion_steps": 1000,
|
304 |
+
"noise_schedule": "cosine",
|
305 |
+
"timestep_respacing": steps,
|
306 |
+
"use_kl": False,
|
307 |
+
"predict_xstart": False,
|
308 |
+
"rescale_timesteps": False,
|
309 |
+
"rescale_learned_sigmas": False,
|
310 |
+
"analog_bit": False,
|
311 |
+
"target_set": -1,
|
312 |
+
"set_name": "",
|
313 |
+
}
|
314 |
+
|
315 |
+
dist_util.setup_dist()
|
316 |
+
model, diffusion = create_model_and_diffusion(
|
317 |
+
args['input_channels'],
|
318 |
+
args['condition_channels'],
|
319 |
+
args['num_channels'],
|
320 |
+
args['out_channels'],
|
321 |
+
args['dataset'],
|
322 |
+
args['use_checkpoint'],
|
323 |
+
args['use_unet'],
|
324 |
+
args['learn_sigma'],
|
325 |
+
args['diffusion_steps'],
|
326 |
+
args['noise_schedule'],
|
327 |
+
args['timestep_respacing'],
|
328 |
+
args['use_kl'],
|
329 |
+
args['predict_xstart'],
|
330 |
+
args['rescale_timesteps'],
|
331 |
+
args['rescale_learned_sigmas'],
|
332 |
+
args['analog_bit'],
|
333 |
+
args['target_set'],
|
334 |
+
args['set_name'],
|
335 |
+
)
|
336 |
+
model.load_state_dict(
|
337 |
+
dist_util.load_state_dict(model_path, map_location="cpu")
|
338 |
+
)
|
339 |
+
model.to(dist_util.dev())
|
340 |
+
model.eval()
|
341 |
+
ID_COLOR = {1: '#EE4D4D', 2: '#C67C7B', 3: '#FFD274', 4: '#BEBEBE', 5: '#BFE3E8',
|
342 |
+
6: '#7BA779', 7: '#E87A90', 8: '#FF8C69', 10: '#1F849B', 11: '#727171',
|
343 |
+
13: '#785A67', 12: '#D3A2C7'}
|
344 |
+
num_room_types = 14
|
345 |
+
sample_fn = (diffusion.p_sample_loop if not use_ddim else diffusion.ddim_sample_loop)
|
346 |
+
print(graphs, corners, room_type)
|
347 |
+
model_kwargs = function_test(graphs, corners, room_type)
|
348 |
+
for key in model_kwargs:
|
349 |
+
model_kwargs[key] = th.from_numpy(np.array([model_kwargs[key]])).cuda()
|
350 |
+
|
351 |
+
png_paths = []
|
352 |
+
svg_paths = []
|
353 |
+
for count in range(num_samples):
|
354 |
+
sample = sample_fn(
|
355 |
+
model,
|
356 |
+
th.Size([1, 2, 100]),
|
357 |
+
clip_denoised=True,
|
358 |
+
model_kwargs=model_kwargs,
|
359 |
+
)
|
360 |
+
|
361 |
+
sample = sample.permute([0, 1, 3, 2])
|
362 |
+
|
363 |
+
pred = save_samples(sample, 'pred', model_kwargs, count, num_room_types, ID_COLOR=ID_COLOR,
|
364 |
+
is_syn=True, draw_graph=False, save_svg=True, save_gif=False, metrics=metrics)
|
365 |
+
|
366 |
+
temp_svg_file = tempfile.NamedTemporaryFile(delete=False, suffix=".svg")
|
367 |
+
pred.saveSvg(temp_svg_file.name)
|
368 |
+
png_file_name = temp_svg_file.name.split(".")[0].split("/")[-1]
|
369 |
+
png_file_path = f'./generated_svgs/{png_file_name}.png'
|
370 |
+
# print(temp_svg_file.name)
|
371 |
+
# print(png_file_name)
|
372 |
+
# print(png_file_path)
|
373 |
+
|
374 |
+
Image.open(io.BytesIO(cairosvg.svg2png(pred.asSvg()))).save(png_file_path)
|
375 |
+
|
376 |
+
output_dir = Path("./generated_svgs")
|
377 |
+
output_dir.mkdir(parents=True, exist_ok=True)
|
378 |
+
file_name = temp_svg_file.name.split("/")[-1]
|
379 |
+
persistent_path = Path(f"{output_dir}/{file_name}")
|
380 |
+
shutil.move(temp_svg_file.name, persistent_path)
|
381 |
+
os.chmod(persistent_path, 0o644)
|
382 |
+
|
383 |
+
svg_paths.append(str(persistent_path))
|
384 |
+
png_paths.append(png_file_path)
|
385 |
+
# print(str(persistent_path))
|
386 |
+
|
387 |
+
return png_paths, svg_paths
|
388 |
+
|
389 |
+
|
390 |
+
rooms_data = []
|
391 |
+
edges_data = []
|
392 |
+
|
393 |
+
|
394 |
+
def generate_layout(metrics: bool, ddim_steps: int, num_samples: int):
|
395 |
+
room_list = []
|
396 |
+
room_corners = []
|
397 |
+
living_room = 0
|
398 |
+
front_door = False
|
399 |
+
entrance = -1
|
400 |
+
|
401 |
+
print(rooms_data)
|
402 |
+
print(edges_data)
|
403 |
+
|
404 |
+
for i, room in enumerate(rooms_data):
|
405 |
+
room_list.append(ROOM_CLASS[room['room_type']])
|
406 |
+
if room['num_corners'] != 0:
|
407 |
+
room_corners.append(int(room['num_corners']))
|
408 |
+
else:
|
409 |
+
room_corners.append(4)
|
410 |
+
|
411 |
+
if room['room_type'] == "Living Room":
|
412 |
+
living_room = i
|
413 |
+
|
414 |
+
elif room['room_type'] == "Entrance":
|
415 |
+
entrance = i
|
416 |
+
|
417 |
+
elif room['room_type'] == "Front Door":
|
418 |
+
front_door = True
|
419 |
+
|
420 |
+
edges = []
|
421 |
+
for edge in edges_data:
|
422 |
+
source_id = int(edge['room1_id'].split()[0])
|
423 |
+
target_id = int(edge['room2_id'].split()[0])
|
424 |
+
edges.append([source_id, 1, target_id])
|
425 |
+
|
426 |
+
index = len(room_list)
|
427 |
+
room_list.append(12)
|
428 |
+
room_corners.append(4)
|
429 |
+
edges.append([source_id, 1, index])
|
430 |
+
edges.append([target_id, 1, index])
|
431 |
+
|
432 |
+
if not front_door:
|
433 |
+
room_list.append(11)
|
434 |
+
room_corners.append(4)
|
435 |
+
if entrance == -1:
|
436 |
+
edges.append([len(room_list) - 1, 1, living_room])
|
437 |
+
else:
|
438 |
+
edges.append([len(room_list) - 1, 1, entrance])
|
439 |
+
|
440 |
+
if np.sum(room_corners) > 99:
|
441 |
+
return {"Error": "Number of Corners exceeded"}
|
442 |
+
|
443 |
+
print(room_list, room_corners, edges)
|
444 |
+
png_paths, svg_paths = create_layout(edges, room_corners, room_list, metrics=metrics, ddim_steps=ddim_steps,
|
445 |
+
num_samples=num_samples)
|
446 |
+
|
447 |
+
png_color_guide = './color_guide.png'
|
448 |
+
|
449 |
+
return png_paths, svg_paths, png_color_guide
|
450 |
+
|
451 |
+
|
452 |
+
with gr.Blocks() as demo:
|
453 |
+
gr.Markdown("## House Layout Generator")
|
454 |
+
|
455 |
+
with gr.Row():
|
456 |
+
room_type = gr.Dropdown(label="Room Type", choices=list(ROOM_CATEGORIES.keys()), value="Living Room")
|
457 |
+
num_corners = gr.Number(label="Number of Corners", value=4)
|
458 |
+
add_room_button = gr.Button("Add Room")
|
459 |
+
|
460 |
+
with gr.Row():
|
461 |
+
room1_id = gr.Dropdown(label="Room 1", choices=[], value=None)
|
462 |
+
room2_id = gr.Dropdown(label="Room 2", choices=[], value=None)
|
463 |
+
add_edge_button = gr.Button("Add Edge")
|
464 |
+
|
465 |
+
rooms_table = gr.DataFrame(label="Rooms Table")
|
466 |
+
edges_table = gr.DataFrame(label="Edges Table")
|
467 |
+
|
468 |
+
metrics_toggle = gr.Checkbox(label="Include metrics", value=True)
|
469 |
+
ddim_input = gr.Number(label="DDIM steps", value=100)
|
470 |
+
num_sample = gr.Number(label="Number of samples", value=4)
|
471 |
+
|
472 |
+
png_gallery = gr.Gallery(label="Layout PNG Outputs", columns=4)
|
473 |
+
svg_files = gr.File(label="Layout SVG Outputs (higher quality)")
|
474 |
+
png_color_guide = gr.Image(label="Color Guide")
|
475 |
+
|
476 |
+
def add_room(room_type, num_corners):
|
477 |
+
room_id = len(rooms_data)
|
478 |
+
rooms_data.append({
|
479 |
+
"room_id": room_id,
|
480 |
+
"room_type": room_type,
|
481 |
+
"num_corners": num_corners
|
482 |
+
})
|
483 |
+
return update_rooms_and_edges()
|
484 |
+
|
485 |
+
|
486 |
+
def add_edge(room1_id, room2_id):
|
487 |
+
edge_id = len(edges_data)
|
488 |
+
edges_data.append({
|
489 |
+
"edge_id": edge_id,
|
490 |
+
"room1_id": room1_id,
|
491 |
+
"room2_id": room2_id
|
492 |
+
})
|
493 |
+
return update_rooms_and_edges()
|
494 |
+
|
495 |
+
|
496 |
+
def update_rooms_and_edges():
|
497 |
+
rooms_df = pd.DataFrame(rooms_data, columns=["room_id", "room_type", "num_corners"])
|
498 |
+
edges_df = pd.DataFrame(edges_data, columns=["edge_id", "room1_id", "room2_id"])
|
499 |
+
room_options = [f"{room['room_id']} {room['room_type']}" for room in rooms_data]
|
500 |
+
return rooms_df, edges_df, gr.update(choices=room_options, value=None), gr.update(choices=room_options,
|
501 |
+
value=None)
|
502 |
+
|
503 |
+
|
504 |
+
generate_button = gr.Button("Generate Layout")
|
505 |
+
generate_button.click(generate_layout, inputs=[metrics_toggle, ddim_input, num_sample], outputs=[png_gallery, svg_files, png_color_guide])
|
506 |
+
|
507 |
+
add_room_button.click(add_room, inputs=[room_type, num_corners],
|
508 |
+
outputs=[rooms_table, edges_table, room1_id, room2_id])
|
509 |
+
add_edge_button.click(add_edge, inputs=[room1_id, room2_id], outputs=[rooms_table, edges_table, room1_id, room2_id])
|
510 |
+
|
511 |
+
|
512 |
+
demo.launch()
|
513 |
+
# global demo
|
514 |
+
# demo.launch(share=True)
|
ckpt/model250000.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7b22c916ec8d5fce087ce9bfe277817a93d60ca2eed9f8bbcf4b8eefec43797a
|
3 |
+
size 106240205
|
ckpt/readme.txt
ADDED
File without changes
|
color_guide.png
ADDED
![]() |
generated_svgs/readme.txt
ADDED
File without changes
|
house_diffusion/__init__.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Codebase for "HouseDiffusion" based on the implementation from "Improved Denoising Diffusion Probabilistic Models".
|
3 |
+
"""
|
house_diffusion/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (310 Bytes). View file
|
|
house_diffusion/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (297 Bytes). View file
|
|
house_diffusion/__pycache__/dist_util.cpython-311.pyc
ADDED
Binary file (5 kB). View file
|
|
house_diffusion/__pycache__/dist_util.cpython-39.pyc
ADDED
Binary file (2.48 kB). View file
|
|
house_diffusion/__pycache__/fp16_util.cpython-311.pyc
ADDED
Binary file (14.1 kB). View file
|
|
house_diffusion/__pycache__/fp16_util.cpython-39.pyc
ADDED
Binary file (7.77 kB). View file
|
|
house_diffusion/__pycache__/gaussian_diffusion.cpython-311.pyc
ADDED
Binary file (44.3 kB). View file
|
|
house_diffusion/__pycache__/gaussian_diffusion.cpython-39.pyc
ADDED
Binary file (26.5 kB). View file
|
|
house_diffusion/__pycache__/logger.cpython-311.pyc
ADDED
Binary file (27.5 kB). View file
|
|
house_diffusion/__pycache__/logger.cpython-39.pyc
ADDED
Binary file (15.5 kB). View file
|
|
house_diffusion/__pycache__/losses.cpython-311.pyc
ADDED
Binary file (3.99 kB). View file
|
|
house_diffusion/__pycache__/losses.cpython-39.pyc
ADDED
Binary file (2.52 kB). View file
|
|
house_diffusion/__pycache__/nn.cpython-311.pyc
ADDED
Binary file (9.8 kB). View file
|
|
house_diffusion/__pycache__/nn.cpython-39.pyc
ADDED
Binary file (6.02 kB). View file
|
|
house_diffusion/__pycache__/resample.cpython-311.pyc
ADDED
Binary file (10.9 kB). View file
|
|
house_diffusion/__pycache__/resample.cpython-39.pyc
ADDED
Binary file (6.84 kB). View file
|
|
house_diffusion/__pycache__/respace.cpython-311.pyc
ADDED
Binary file (7.98 kB). View file
|
|
house_diffusion/__pycache__/respace.cpython-39.pyc
ADDED
Binary file (5.17 kB). View file
|
|
house_diffusion/__pycache__/rplanhg_datasets.cpython-311.pyc
ADDED
Binary file (36.9 kB). View file
|
|
house_diffusion/__pycache__/rplanhg_datasets.cpython-39.pyc
ADDED
Binary file (15.4 kB). View file
|
|
house_diffusion/__pycache__/script_util.cpython-311.pyc
ADDED
Binary file (5.66 kB). View file
|
|
house_diffusion/__pycache__/script_util.cpython-39.pyc
ADDED
Binary file (3.68 kB). View file
|
|
house_diffusion/__pycache__/train_util.cpython-311.pyc
ADDED
Binary file (18 kB). View file
|
|
house_diffusion/__pycache__/train_util.cpython-39.pyc
ADDED
Binary file (11.1 kB). View file
|
|
house_diffusion/__pycache__/transformer.cpython-311.pyc
ADDED
Binary file (21.9 kB). View file
|
|
house_diffusion/__pycache__/transformer.cpython-39.pyc
ADDED
Binary file (9.69 kB). View file
|
|
house_diffusion/__pycache__/transformer_models.cpython-39.pyc
ADDED
Binary file (6.05 kB). View file
|
|
house_diffusion/dist_util.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Helpers for distributed training.
|
3 |
+
"""
|
4 |
+
|
5 |
+
import io
|
6 |
+
import os
|
7 |
+
import socket
|
8 |
+
|
9 |
+
import blobfile as bf
|
10 |
+
from mpi4py import MPI
|
11 |
+
import torch as th
|
12 |
+
import torch.distributed as dist
|
13 |
+
|
14 |
+
# Change this to reflect your cluster layout.
|
15 |
+
# The GPU for a given rank is (rank % GPUS_PER_NODE).
|
16 |
+
GPUS_PER_NODE = 4
|
17 |
+
|
18 |
+
SETUP_RETRY_COUNT = 3
|
19 |
+
|
20 |
+
|
21 |
+
def setup_dist():
|
22 |
+
"""
|
23 |
+
Setup a distributed process group.
|
24 |
+
"""
|
25 |
+
if dist.is_initialized():
|
26 |
+
return
|
27 |
+
## temporary removed to manually set the CUDA_VISIBLE_DEVICES
|
28 |
+
#os.environ["CUDA_VISIBLE_DEVICES"] = f"{MPI.COMM_WORLD.Get_rank() % GPUS_PER_NODE}"
|
29 |
+
|
30 |
+
comm = MPI.COMM_WORLD
|
31 |
+
backend = "gloo" if not th.cuda.is_available() else "nccl"
|
32 |
+
|
33 |
+
if backend == "gloo":
|
34 |
+
hostname = "localhost"
|
35 |
+
else:
|
36 |
+
hostname = socket.gethostbyname(socket.getfqdn())
|
37 |
+
os.environ["MASTER_ADDR"] = comm.bcast(hostname, root=0)
|
38 |
+
os.environ["RANK"] = str(comm.rank)
|
39 |
+
os.environ["WORLD_SIZE"] = str(comm.size)
|
40 |
+
|
41 |
+
port = comm.bcast(_find_free_port(), root=0)
|
42 |
+
os.environ["MASTER_PORT"] = str(port)
|
43 |
+
dist.init_process_group(backend=backend, init_method="env://")
|
44 |
+
|
45 |
+
|
46 |
+
def dev():
|
47 |
+
"""
|
48 |
+
Get the device to use for torch.distributed.
|
49 |
+
"""
|
50 |
+
if th.cuda.is_available():
|
51 |
+
return th.device(f"cuda")
|
52 |
+
return th.device("cpu")
|
53 |
+
|
54 |
+
|
55 |
+
def load_state_dict(path, **kwargs):
|
56 |
+
"""
|
57 |
+
Load a PyTorch file without redundant fetches across MPI ranks.
|
58 |
+
"""
|
59 |
+
chunk_size = 2 ** 30 # MPI has a relatively small size limit
|
60 |
+
if MPI.COMM_WORLD.Get_rank() == 0:
|
61 |
+
with bf.BlobFile(path, "rb") as f:
|
62 |
+
data = f.read()
|
63 |
+
num_chunks = len(data) // chunk_size
|
64 |
+
if len(data) % chunk_size:
|
65 |
+
num_chunks += 1
|
66 |
+
MPI.COMM_WORLD.bcast(num_chunks)
|
67 |
+
for i in range(0, len(data), chunk_size):
|
68 |
+
MPI.COMM_WORLD.bcast(data[i : i + chunk_size])
|
69 |
+
else:
|
70 |
+
num_chunks = MPI.COMM_WORLD.bcast(None)
|
71 |
+
data = bytes()
|
72 |
+
for _ in range(num_chunks):
|
73 |
+
data += MPI.COMM_WORLD.bcast(None)
|
74 |
+
|
75 |
+
return th.load(io.BytesIO(data), **kwargs)
|
76 |
+
|
77 |
+
|
78 |
+
def sync_params(params):
|
79 |
+
"""
|
80 |
+
Synchronize a sequence of Tensors across ranks from rank 0.
|
81 |
+
"""
|
82 |
+
for p in params:
|
83 |
+
with th.no_grad():
|
84 |
+
dist.broadcast(p, 0)
|
85 |
+
|
86 |
+
|
87 |
+
def _find_free_port():
|
88 |
+
try:
|
89 |
+
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
|
90 |
+
s.bind(("", 0))
|
91 |
+
s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
|
92 |
+
return s.getsockname()[1]
|
93 |
+
finally:
|
94 |
+
s.close()
|
house_diffusion/fp16_util.py
ADDED
@@ -0,0 +1,236 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Helpers to train with 16-bit precision.
|
3 |
+
"""
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import torch as th
|
7 |
+
import torch.nn as nn
|
8 |
+
from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors
|
9 |
+
|
10 |
+
from . import logger
|
11 |
+
|
12 |
+
INITIAL_LOG_LOSS_SCALE = 20.0
|
13 |
+
|
14 |
+
|
15 |
+
def convert_module_to_f16(l):
|
16 |
+
"""
|
17 |
+
Convert primitive modules to float16.
|
18 |
+
"""
|
19 |
+
if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Conv3d)):
|
20 |
+
l.weight.data = l.weight.data.half()
|
21 |
+
if l.bias is not None:
|
22 |
+
l.bias.data = l.bias.data.half()
|
23 |
+
|
24 |
+
|
25 |
+
def convert_module_to_f32(l):
|
26 |
+
"""
|
27 |
+
Convert primitive modules to float32, undoing convert_module_to_f16().
|
28 |
+
"""
|
29 |
+
if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Conv3d)):
|
30 |
+
l.weight.data = l.weight.data.float()
|
31 |
+
if l.bias is not None:
|
32 |
+
l.bias.data = l.bias.data.float()
|
33 |
+
|
34 |
+
|
35 |
+
def make_master_params(param_groups_and_shapes):
|
36 |
+
"""
|
37 |
+
Copy model parameters into a (differently-shaped) list of full-precision
|
38 |
+
parameters.
|
39 |
+
"""
|
40 |
+
master_params = []
|
41 |
+
for param_group, shape in param_groups_and_shapes:
|
42 |
+
master_param = nn.Parameter(
|
43 |
+
_flatten_dense_tensors(
|
44 |
+
[param.detach().float() for (_, param) in param_group]
|
45 |
+
).view(shape)
|
46 |
+
)
|
47 |
+
master_param.requires_grad = True
|
48 |
+
master_params.append(master_param)
|
49 |
+
return master_params
|
50 |
+
|
51 |
+
|
52 |
+
def model_grads_to_master_grads(param_groups_and_shapes, master_params):
|
53 |
+
"""
|
54 |
+
Copy the gradients from the model parameters into the master parameters
|
55 |
+
from make_master_params().
|
56 |
+
"""
|
57 |
+
for master_param, (param_group, shape) in zip(
|
58 |
+
master_params, param_groups_and_shapes
|
59 |
+
):
|
60 |
+
master_param.grad = _flatten_dense_tensors(
|
61 |
+
[param_grad_or_zeros(param) for (_, param) in param_group]
|
62 |
+
).view(shape)
|
63 |
+
|
64 |
+
|
65 |
+
def master_params_to_model_params(param_groups_and_shapes, master_params):
|
66 |
+
"""
|
67 |
+
Copy the master parameter data back into the model parameters.
|
68 |
+
"""
|
69 |
+
# Without copying to a list, if a generator is passed, this will
|
70 |
+
# silently not copy any parameters.
|
71 |
+
for master_param, (param_group, _) in zip(master_params, param_groups_and_shapes):
|
72 |
+
for (_, param), unflat_master_param in zip(
|
73 |
+
param_group, unflatten_master_params(param_group, master_param.view(-1))
|
74 |
+
):
|
75 |
+
param.detach().copy_(unflat_master_param)
|
76 |
+
|
77 |
+
|
78 |
+
def unflatten_master_params(param_group, master_param):
|
79 |
+
return _unflatten_dense_tensors(master_param, [param for (_, param) in param_group])
|
80 |
+
|
81 |
+
|
82 |
+
def get_param_groups_and_shapes(named_model_params):
|
83 |
+
named_model_params = list(named_model_params)
|
84 |
+
scalar_vector_named_params = (
|
85 |
+
[(n, p) for (n, p) in named_model_params if p.ndim <= 1],
|
86 |
+
(-1),
|
87 |
+
)
|
88 |
+
matrix_named_params = (
|
89 |
+
[(n, p) for (n, p) in named_model_params if p.ndim > 1],
|
90 |
+
(1, -1),
|
91 |
+
)
|
92 |
+
return [scalar_vector_named_params, matrix_named_params]
|
93 |
+
|
94 |
+
|
95 |
+
def master_params_to_state_dict(
|
96 |
+
model, param_groups_and_shapes, master_params, use_fp16
|
97 |
+
):
|
98 |
+
if use_fp16:
|
99 |
+
state_dict = model.state_dict()
|
100 |
+
for master_param, (param_group, _) in zip(
|
101 |
+
master_params, param_groups_and_shapes
|
102 |
+
):
|
103 |
+
for (name, _), unflat_master_param in zip(
|
104 |
+
param_group, unflatten_master_params(param_group, master_param.view(-1))
|
105 |
+
):
|
106 |
+
assert name in state_dict
|
107 |
+
state_dict[name] = unflat_master_param
|
108 |
+
else:
|
109 |
+
state_dict = model.state_dict()
|
110 |
+
for i, (name, _value) in enumerate(model.named_parameters()):
|
111 |
+
assert name in state_dict
|
112 |
+
state_dict[name] = master_params[i]
|
113 |
+
return state_dict
|
114 |
+
|
115 |
+
|
116 |
+
def state_dict_to_master_params(model, state_dict, use_fp16):
|
117 |
+
if use_fp16:
|
118 |
+
named_model_params = [
|
119 |
+
(name, state_dict[name]) for name, _ in model.named_parameters()
|
120 |
+
]
|
121 |
+
param_groups_and_shapes = get_param_groups_and_shapes(named_model_params)
|
122 |
+
master_params = make_master_params(param_groups_and_shapes)
|
123 |
+
else:
|
124 |
+
master_params = [state_dict[name] for name, _ in model.named_parameters()]
|
125 |
+
return master_params
|
126 |
+
|
127 |
+
|
128 |
+
def zero_master_grads(master_params):
|
129 |
+
for param in master_params:
|
130 |
+
param.grad = None
|
131 |
+
|
132 |
+
|
133 |
+
def zero_grad(model_params):
|
134 |
+
for param in model_params:
|
135 |
+
# Taken from https://pytorch.org/docs/stable/_modules/torch/optim/optimizer.html#Optimizer.add_param_group
|
136 |
+
if param.grad is not None:
|
137 |
+
param.grad.detach_()
|
138 |
+
param.grad.zero_()
|
139 |
+
|
140 |
+
|
141 |
+
def param_grad_or_zeros(param):
|
142 |
+
if param.grad is not None:
|
143 |
+
return param.grad.data.detach()
|
144 |
+
else:
|
145 |
+
return th.zeros_like(param)
|
146 |
+
|
147 |
+
|
148 |
+
class MixedPrecisionTrainer:
|
149 |
+
def __init__(
|
150 |
+
self,
|
151 |
+
*,
|
152 |
+
model,
|
153 |
+
use_fp16=False,
|
154 |
+
fp16_scale_growth=1e-3,
|
155 |
+
initial_lg_loss_scale=INITIAL_LOG_LOSS_SCALE,
|
156 |
+
):
|
157 |
+
self.model = model
|
158 |
+
self.use_fp16 = use_fp16
|
159 |
+
self.fp16_scale_growth = fp16_scale_growth
|
160 |
+
|
161 |
+
self.model_params = list(self.model.parameters())
|
162 |
+
self.master_params = self.model_params
|
163 |
+
self.param_groups_and_shapes = None
|
164 |
+
self.lg_loss_scale = initial_lg_loss_scale
|
165 |
+
|
166 |
+
if self.use_fp16:
|
167 |
+
self.param_groups_and_shapes = get_param_groups_and_shapes(
|
168 |
+
self.model.named_parameters()
|
169 |
+
)
|
170 |
+
self.master_params = make_master_params(self.param_groups_and_shapes)
|
171 |
+
self.model.convert_to_fp16()
|
172 |
+
|
173 |
+
def zero_grad(self):
|
174 |
+
zero_grad(self.model_params)
|
175 |
+
|
176 |
+
def backward(self, loss: th.Tensor):
|
177 |
+
if self.use_fp16:
|
178 |
+
loss_scale = 2 ** self.lg_loss_scale
|
179 |
+
(loss * loss_scale).backward()
|
180 |
+
else:
|
181 |
+
loss.backward()
|
182 |
+
|
183 |
+
def optimize(self, opt: th.optim.Optimizer):
|
184 |
+
if self.use_fp16:
|
185 |
+
return self._optimize_fp16(opt)
|
186 |
+
else:
|
187 |
+
return self._optimize_normal(opt)
|
188 |
+
|
189 |
+
def _optimize_fp16(self, opt: th.optim.Optimizer):
|
190 |
+
logger.logkv_mean("lg_loss_scale", self.lg_loss_scale)
|
191 |
+
model_grads_to_master_grads(self.param_groups_and_shapes, self.master_params)
|
192 |
+
grad_norm, param_norm = self._compute_norms(grad_scale=2 ** self.lg_loss_scale)
|
193 |
+
if check_overflow(grad_norm):
|
194 |
+
self.lg_loss_scale -= 1
|
195 |
+
logger.log(f"Found NaN, decreased lg_loss_scale to {self.lg_loss_scale}")
|
196 |
+
zero_master_grads(self.master_params)
|
197 |
+
return False
|
198 |
+
|
199 |
+
logger.logkv_mean("grad_norm", grad_norm)
|
200 |
+
logger.logkv_mean("param_norm", param_norm)
|
201 |
+
|
202 |
+
self.master_params[0].grad.mul_(1.0 / (2 ** self.lg_loss_scale))
|
203 |
+
opt.step()
|
204 |
+
zero_master_grads(self.master_params)
|
205 |
+
master_params_to_model_params(self.param_groups_and_shapes, self.master_params)
|
206 |
+
self.lg_loss_scale += self.fp16_scale_growth
|
207 |
+
return True
|
208 |
+
|
209 |
+
def _optimize_normal(self, opt: th.optim.Optimizer):
|
210 |
+
grad_norm, param_norm = self._compute_norms()
|
211 |
+
logger.logkv_mean("grad_norm", grad_norm)
|
212 |
+
logger.logkv_mean("param_norm", param_norm)
|
213 |
+
opt.step()
|
214 |
+
return True
|
215 |
+
|
216 |
+
def _compute_norms(self, grad_scale=1.0):
|
217 |
+
grad_norm = 0.0
|
218 |
+
param_norm = 0.0
|
219 |
+
for p in self.master_params:
|
220 |
+
with th.no_grad():
|
221 |
+
param_norm += th.norm(p, p=2, dtype=th.float32).item() ** 2
|
222 |
+
if p.grad is not None:
|
223 |
+
grad_norm += th.norm(p.grad, p=2, dtype=th.float32).item() ** 2
|
224 |
+
return np.sqrt(grad_norm) / grad_scale, np.sqrt(param_norm)
|
225 |
+
|
226 |
+
def master_params_to_state_dict(self, master_params):
|
227 |
+
return master_params_to_state_dict(
|
228 |
+
self.model, self.param_groups_and_shapes, master_params, self.use_fp16
|
229 |
+
)
|
230 |
+
|
231 |
+
def state_dict_to_master_params(self, state_dict):
|
232 |
+
return state_dict_to_master_params(self.model, state_dict, self.use_fp16)
|
233 |
+
|
234 |
+
|
235 |
+
def check_overflow(value):
|
236 |
+
return (value == float("inf")) or (value == -float("inf")) or (value != value)
|
house_diffusion/gaussian_diffusion.py
ADDED
@@ -0,0 +1,1013 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
This code started out as a PyTorch port of Ho et al's diffusion models:
|
3 |
+
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/diffusion_utils_2.py
|
4 |
+
|
5 |
+
Docstrings have been added, as well as DDIM sampling and a new collection of beta schedules.
|
6 |
+
"""
|
7 |
+
|
8 |
+
import enum
|
9 |
+
import math
|
10 |
+
|
11 |
+
import numpy as np
|
12 |
+
import torch as th
|
13 |
+
|
14 |
+
from .nn import mean_flat
|
15 |
+
from .losses import normal_kl, discretized_gaussian_log_likelihood
|
16 |
+
from tqdm.auto import tqdm
|
17 |
+
|
18 |
+
|
19 |
+
def get_named_beta_schedule(schedule_name, num_diffusion_timesteps):
|
20 |
+
"""
|
21 |
+
Get a pre-defined beta schedule for the given name.
|
22 |
+
|
23 |
+
The beta schedule library consists of beta schedules which remain similar
|
24 |
+
in the limit of num_diffusion_timesteps.
|
25 |
+
Beta schedules may be added, but should not be removed or changed once
|
26 |
+
they are committed to maintain backwards compatibility.
|
27 |
+
"""
|
28 |
+
if schedule_name == "linear":
|
29 |
+
# Linear schedule from Ho et al, extended to work for any number of
|
30 |
+
# diffusion steps.
|
31 |
+
scale = 1000 / num_diffusion_timesteps
|
32 |
+
beta_start = scale * 0.0001
|
33 |
+
beta_end = scale * 0.02
|
34 |
+
return np.linspace(
|
35 |
+
beta_start, beta_end, num_diffusion_timesteps, dtype=np.float64
|
36 |
+
)
|
37 |
+
elif schedule_name == "cosine":
|
38 |
+
print("COSINE")
|
39 |
+
return betas_for_alpha_bar(
|
40 |
+
num_diffusion_timesteps,
|
41 |
+
# lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2,
|
42 |
+
lambda t: math.cos((t) / 1.000 * math.pi / 2) ** 2,
|
43 |
+
)
|
44 |
+
else:
|
45 |
+
raise NotImplementedError(f"unknown beta schedule: {schedule_name}")
|
46 |
+
|
47 |
+
|
48 |
+
def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
|
49 |
+
"""
|
50 |
+
Create a beta schedule that discretizes the given alpha_t_bar function,
|
51 |
+
which defines the cumulative product of (1-beta) over time from t = [0,1].
|
52 |
+
|
53 |
+
:param num_diffusion_timesteps: the number of betas to produce.
|
54 |
+
:param alpha_bar: a lambda that takes an argument t from 0 to 1 and
|
55 |
+
produces the cumulative product of (1-beta) up to that
|
56 |
+
part of the diffusion process.
|
57 |
+
:param max_beta: the maximum beta to use; use values lower than 1 to
|
58 |
+
prevent singularities.
|
59 |
+
"""
|
60 |
+
betas = []
|
61 |
+
for i in range(num_diffusion_timesteps):
|
62 |
+
t1 = i / num_diffusion_timesteps
|
63 |
+
t2 = (i + 1) / num_diffusion_timesteps
|
64 |
+
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
|
65 |
+
return np.array(betas)
|
66 |
+
|
67 |
+
|
68 |
+
class ModelMeanType(enum.Enum):
|
69 |
+
"""
|
70 |
+
Which type of output the model predicts.
|
71 |
+
"""
|
72 |
+
|
73 |
+
PREVIOUS_X = enum.auto() # the model predicts x_{t-1}
|
74 |
+
START_X = enum.auto() # the model predicts x_0
|
75 |
+
EPSILON = enum.auto() # the model predicts epsilon
|
76 |
+
|
77 |
+
|
78 |
+
class ModelVarType(enum.Enum):
|
79 |
+
"""
|
80 |
+
What is used as the model's output variance.
|
81 |
+
|
82 |
+
The LEARNED_RANGE option has been added to allow the model to predict
|
83 |
+
values between FIXED_SMALL and FIXED_LARGE, making its job easier.
|
84 |
+
"""
|
85 |
+
|
86 |
+
LEARNED = enum.auto()
|
87 |
+
FIXED_SMALL = enum.auto()
|
88 |
+
FIXED_LARGE = enum.auto()
|
89 |
+
LEARNED_RANGE = enum.auto()
|
90 |
+
|
91 |
+
|
92 |
+
class LossType(enum.Enum):
|
93 |
+
MSE = enum.auto() # use raw MSE loss (and KL when learning variances)
|
94 |
+
RESCALED_MSE = (
|
95 |
+
enum.auto()
|
96 |
+
) # use raw MSE loss (with RESCALED_KL when learning variances)
|
97 |
+
KL = enum.auto() # use the variational lower-bound
|
98 |
+
RESCALED_KL = enum.auto() # like KL, but rescale to estimate the full VLB
|
99 |
+
|
100 |
+
def is_vb(self):
|
101 |
+
return self == LossType.KL or self == LossType.RESCALED_KL
|
102 |
+
|
103 |
+
|
104 |
+
class GaussianDiffusion:
|
105 |
+
"""
|
106 |
+
Utilities for training and sampling diffusion models.
|
107 |
+
|
108 |
+
Ported directly from here, and then adapted over time to further experimentation.
|
109 |
+
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/diffusion_utils_2.py#L42
|
110 |
+
|
111 |
+
:param betas: a 1-D numpy array of betas for each diffusion timestep,
|
112 |
+
starting at T and going to 1.
|
113 |
+
:param model_mean_type: a ModelMeanType determining what the model outputs.
|
114 |
+
:param model_var_type: a ModelVarType determining how variance is output.
|
115 |
+
:param loss_type: a LossType determining the loss function to use.
|
116 |
+
:param rescale_timesteps: if True, pass floating point timesteps into the
|
117 |
+
model so that they are always scaled like in the
|
118 |
+
original paper (0 to 1000).
|
119 |
+
"""
|
120 |
+
|
121 |
+
def __init__(
|
122 |
+
self,
|
123 |
+
*,
|
124 |
+
betas,
|
125 |
+
model_mean_type,
|
126 |
+
model_var_type,
|
127 |
+
loss_type,
|
128 |
+
rescale_timesteps=False,
|
129 |
+
):
|
130 |
+
self.model_mean_type = model_mean_type
|
131 |
+
self.model_var_type = model_var_type
|
132 |
+
self.loss_type = loss_type
|
133 |
+
self.rescale_timesteps = rescale_timesteps
|
134 |
+
|
135 |
+
# Use float64 for accuracy.
|
136 |
+
betas = np.array(betas, dtype=np.float64)
|
137 |
+
self.betas = betas
|
138 |
+
assert len(betas.shape) == 1, "betas must be 1-D"
|
139 |
+
assert (betas > 0).all() and (betas <= 1).all()
|
140 |
+
|
141 |
+
self.num_timesteps = int(betas.shape[0])
|
142 |
+
|
143 |
+
alphas = 1.0 - betas
|
144 |
+
self.alphas_cumprod = np.cumprod(alphas, axis=0)
|
145 |
+
self.alphas_cumprod_prev = np.append(1.0, self.alphas_cumprod[:-1])
|
146 |
+
self.alphas_cumprod_next = np.append(self.alphas_cumprod[1:], 0.0)
|
147 |
+
assert self.alphas_cumprod_prev.shape == (self.num_timesteps,)
|
148 |
+
|
149 |
+
# calculations for diffusion q(x_t | x_{t-1}) and others
|
150 |
+
self.sqrt_alphas_cumprod = np.sqrt(self.alphas_cumprod)
|
151 |
+
self.sqrt_one_minus_alphas_cumprod = np.sqrt(1.0 - self.alphas_cumprod)
|
152 |
+
self.log_one_minus_alphas_cumprod = np.log(1.0 - self.alphas_cumprod)
|
153 |
+
self.sqrt_recip_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod)
|
154 |
+
self.sqrt_recipm1_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod - 1)
|
155 |
+
|
156 |
+
# calculations for posterior q(x_{t-1} | x_t, x_0)
|
157 |
+
self.posterior_variance = (
|
158 |
+
betas * (1.0 - self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod)
|
159 |
+
)
|
160 |
+
# log calculation clipped because the posterior variance is 0 at the
|
161 |
+
# beginning of the diffusion chain.
|
162 |
+
self.posterior_log_variance_clipped = np.log(
|
163 |
+
np.append(self.posterior_variance[1], self.posterior_variance[1:])
|
164 |
+
)
|
165 |
+
self.posterior_mean_coef1 = (
|
166 |
+
betas * np.sqrt(self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod)
|
167 |
+
)
|
168 |
+
self.posterior_mean_coef2 = (
|
169 |
+
(1.0 - self.alphas_cumprod_prev)
|
170 |
+
* np.sqrt(alphas)
|
171 |
+
/ (1.0 - self.alphas_cumprod)
|
172 |
+
)
|
173 |
+
|
174 |
+
def q_mean_variance(self, x_start, t):
|
175 |
+
"""
|
176 |
+
Get the distribution q(x_t | x_0).
|
177 |
+
|
178 |
+
:param x_start: the [N x C x ...] tensor of noiseless inputs.
|
179 |
+
:param t: the number of diffusion steps (minus 1). Here, 0 means one step.
|
180 |
+
:return: A tuple (mean, variance, log_variance), all of x_start's shape.
|
181 |
+
"""
|
182 |
+
mean = (
|
183 |
+
_extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
|
184 |
+
)
|
185 |
+
variance = _extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape)
|
186 |
+
log_variance = _extract_into_tensor(
|
187 |
+
self.log_one_minus_alphas_cumprod, t, x_start.shape
|
188 |
+
)
|
189 |
+
return mean, variance, log_variance
|
190 |
+
|
191 |
+
def q_sample(self, x_start, t, noise=None):
|
192 |
+
"""
|
193 |
+
Diffuse the data for a given number of diffusion steps.
|
194 |
+
|
195 |
+
In other words, sample from q(x_t | x_0).
|
196 |
+
|
197 |
+
:param x_start: the initial data batch.
|
198 |
+
:param t: the number of diffusion steps (minus 1). Here, 0 means one step.
|
199 |
+
:param noise: if specified, the split-out normal noise.
|
200 |
+
:return: A noisy version of x_start.
|
201 |
+
"""
|
202 |
+
if noise is None:
|
203 |
+
noise = th.randn_like(x_start)
|
204 |
+
assert noise.shape == x_start.shape
|
205 |
+
return (
|
206 |
+
_extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
|
207 |
+
+ _extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape)
|
208 |
+
* noise
|
209 |
+
)
|
210 |
+
|
211 |
+
def q_posterior_mean_variance(self, x_start, x_t, t):
|
212 |
+
"""
|
213 |
+
Compute the mean and variance of the diffusion posterior:
|
214 |
+
|
215 |
+
q(x_{t-1} | x_t, x_0)
|
216 |
+
|
217 |
+
"""
|
218 |
+
assert x_start.shape == x_t.shape
|
219 |
+
posterior_mean = (
|
220 |
+
_extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start
|
221 |
+
+ _extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
|
222 |
+
)
|
223 |
+
posterior_variance = _extract_into_tensor(self.posterior_variance, t, x_t.shape)
|
224 |
+
posterior_log_variance_clipped = _extract_into_tensor(
|
225 |
+
self.posterior_log_variance_clipped, t, x_t.shape
|
226 |
+
)
|
227 |
+
assert (
|
228 |
+
posterior_mean.shape[0]
|
229 |
+
== posterior_variance.shape[0]
|
230 |
+
== posterior_log_variance_clipped.shape[0]
|
231 |
+
== x_start.shape[0]
|
232 |
+
)
|
233 |
+
return posterior_mean, posterior_variance, posterior_log_variance_clipped
|
234 |
+
|
235 |
+
def p_mean_variance(
|
236 |
+
self, model, x, t, clip_denoised=True, denoised_fn=None, model_kwargs=None, analog_bit=None
|
237 |
+
):
|
238 |
+
"""
|
239 |
+
Apply the model to get p(x_{t-1} | x_t), as well as a prediction of
|
240 |
+
the initial x, x_0.
|
241 |
+
|
242 |
+
:param model: the model, which takes a signal and a batch of timesteps
|
243 |
+
as input.
|
244 |
+
:param x: the [N x C x ...] tensor at time t.
|
245 |
+
:param t: a 1-D Tensor of timesteps.
|
246 |
+
:param clip_denoised: if True, clip the denoised signal into [-1, 1].
|
247 |
+
:param denoised_fn: if not None, a function which applies to the
|
248 |
+
x_start prediction before it is used to sample. Applies before
|
249 |
+
clip_denoised.
|
250 |
+
:param model_kwargs: if not None, a dict of extra keyword arguments to
|
251 |
+
pass to the model. This can be used for conditioning.
|
252 |
+
:return: a dict with the following keys:
|
253 |
+
- 'mean': the model mean output.
|
254 |
+
- 'variance': the model variance output.
|
255 |
+
- 'log_variance': the log of 'variance'.
|
256 |
+
- 'pred_xstart': the prediction for x_0.
|
257 |
+
"""
|
258 |
+
if model_kwargs is None:
|
259 |
+
model_kwargs = {}
|
260 |
+
|
261 |
+
B, C = x.shape[:2]
|
262 |
+
assert t.shape == (B,)
|
263 |
+
xtalpha = _extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x.shape).permute([0,2,1])
|
264 |
+
epsalpha = _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x.shape).permute([0,2,1])
|
265 |
+
# print("TTTTTTTTTTTTTTTTTTTT", t)
|
266 |
+
model_output_dec, model_output_bin = model(x, self._scale_timesteps(t), xtalpha=xtalpha, epsalpha=epsalpha, is_syn=True, **model_kwargs)
|
267 |
+
model_output = model_output_dec
|
268 |
+
|
269 |
+
if analog_bit:
|
270 |
+
predict_descrete = 0
|
271 |
+
else:
|
272 |
+
predict_descrete = 32
|
273 |
+
|
274 |
+
if t[0] < predict_descrete:
|
275 |
+
def bin2dec(b, bits):
|
276 |
+
mask = 2 ** th.arange(bits - 1, -1, -1).to(b.device, b.dtype)
|
277 |
+
return th.sum(mask * b, -1)
|
278 |
+
model_output_bin[model_output_bin>0] = 1
|
279 |
+
model_output_bin[model_output_bin<=0] = 0
|
280 |
+
model_output_bin = bin2dec(model_output_bin.round().int().permute([0,2,1]).reshape(model_output_bin.shape[0],
|
281 |
+
model_output_bin.shape[2], 2, 8), 8).permute([0,2,1])
|
282 |
+
|
283 |
+
model_output_bin = ((model_output_bin/256) - 0.5) * 2
|
284 |
+
model_output = model_output_bin
|
285 |
+
|
286 |
+
if self.model_var_type in [ModelVarType.LEARNED, ModelVarType.LEARNED_RANGE]:
|
287 |
+
assert model_output.shape == (B, C * 2, *x.shape[2:])
|
288 |
+
model_output, model_var_values = th.split(model_output, C, dim=1)
|
289 |
+
if self.model_var_type == ModelVarType.LEARNED:
|
290 |
+
model_log_variance = model_var_values
|
291 |
+
model_variance = th.exp(model_log_variance)
|
292 |
+
else:
|
293 |
+
min_log = _extract_into_tensor(
|
294 |
+
self.posterior_log_variance_clipped, t, x.shape
|
295 |
+
)
|
296 |
+
max_log = _extract_into_tensor(np.log(self.betas), t, x.shape)
|
297 |
+
# The model_var_values is [-1, 1] for [min_var, max_var].
|
298 |
+
frac = (model_var_values + 1) / 2
|
299 |
+
model_log_variance = frac * max_log + (1 - frac) * min_log
|
300 |
+
model_variance = th.exp(model_log_variance)
|
301 |
+
else:
|
302 |
+
model_variance, model_log_variance = {
|
303 |
+
# for fixedlarge, we set the initial (log-)variance like so
|
304 |
+
# to get a better decoder log likelihood.
|
305 |
+
ModelVarType.FIXED_LARGE: (
|
306 |
+
np.append(self.posterior_variance[1], self.betas[1:]),
|
307 |
+
np.log(np.append(self.posterior_variance[1], self.betas[1:])),
|
308 |
+
),
|
309 |
+
ModelVarType.FIXED_SMALL: (
|
310 |
+
self.posterior_variance,
|
311 |
+
self.posterior_log_variance_clipped,
|
312 |
+
),
|
313 |
+
}[self.model_var_type]
|
314 |
+
model_variance = _extract_into_tensor(model_variance, t, x.shape)
|
315 |
+
model_log_variance = _extract_into_tensor(model_log_variance, t, x.shape)
|
316 |
+
|
317 |
+
def process_xstart(x):
|
318 |
+
if denoised_fn is not None:
|
319 |
+
x = denoised_fn(x)
|
320 |
+
if clip_denoised:
|
321 |
+
return x.clamp(-1, 1)
|
322 |
+
return x
|
323 |
+
|
324 |
+
if t[0] >= predict_descrete:
|
325 |
+
if self.model_mean_type == ModelMeanType.PREVIOUS_X:
|
326 |
+
pred_xstart = process_xstart(
|
327 |
+
self._predict_xstart_from_xprev(x_t=x, t=t, xprev=model_output)
|
328 |
+
)
|
329 |
+
model_mean = model_output
|
330 |
+
elif self.model_mean_type in [ModelMeanType.START_X, ModelMeanType.EPSILON]:
|
331 |
+
if self.model_mean_type == ModelMeanType.START_X:
|
332 |
+
pred_xstart = process_xstart(model_output)
|
333 |
+
else:
|
334 |
+
pred_xstart = process_xstart(
|
335 |
+
self._predict_xstart_from_eps(x_t=x, t=t, eps=model_output)
|
336 |
+
)
|
337 |
+
model_mean, _, _ = self.q_posterior_mean_variance(
|
338 |
+
x_start=pred_xstart, x_t=x, t=t
|
339 |
+
)
|
340 |
+
else:
|
341 |
+
raise NotImplementedError(self.model_mean_type)
|
342 |
+
else:
|
343 |
+
pred_xstart = process_xstart(model_output)
|
344 |
+
model_mean, _, _ = self.q_posterior_mean_variance(
|
345 |
+
x_start=pred_xstart, x_t=x, t=t
|
346 |
+
)
|
347 |
+
|
348 |
+
assert (
|
349 |
+
model_mean.shape == model_log_variance.shape == pred_xstart.shape == x.shape
|
350 |
+
)
|
351 |
+
return {
|
352 |
+
"mean": model_mean,
|
353 |
+
"variance": model_variance,
|
354 |
+
"log_variance": model_log_variance,
|
355 |
+
"pred_xstart": pred_xstart,
|
356 |
+
}
|
357 |
+
|
358 |
+
def _predict_xstart_from_eps(self, x_t, t, eps):
|
359 |
+
assert x_t.shape == eps.shape
|
360 |
+
return (
|
361 |
+
_extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t
|
362 |
+
- _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * eps
|
363 |
+
)
|
364 |
+
|
365 |
+
def _predict_xstart_from_xprev(self, x_t, t, xprev):
|
366 |
+
assert x_t.shape == xprev.shape
|
367 |
+
return ( # (xprev - coef2*x_t) / coef1
|
368 |
+
_extract_into_tensor(1.0 / self.posterior_mean_coef1, t, x_t.shape) * xprev
|
369 |
+
- _extract_into_tensor(
|
370 |
+
self.posterior_mean_coef2 / self.posterior_mean_coef1, t, x_t.shape
|
371 |
+
)
|
372 |
+
* x_t
|
373 |
+
)
|
374 |
+
|
375 |
+
def _predict_eps_from_xstart(self, x_t, t, pred_xstart):
|
376 |
+
return (
|
377 |
+
_extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t
|
378 |
+
- pred_xstart
|
379 |
+
) / _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
|
380 |
+
|
381 |
+
def _scale_timesteps(self, t):
|
382 |
+
if self.rescale_timesteps:
|
383 |
+
return t.float() * (1000.0 / self.num_timesteps)
|
384 |
+
return t
|
385 |
+
|
386 |
+
def condition_mean(self, cond_fn, p_mean_var, x, t, model_kwargs=None):
|
387 |
+
"""
|
388 |
+
Compute the mean for the previous step, given a function cond_fn that
|
389 |
+
computes the gradient of a conditional log probability with respect to
|
390 |
+
x. In particular, cond_fn computes grad(log(p(y|x))), and we want to
|
391 |
+
condition on y.
|
392 |
+
|
393 |
+
This uses the conditioning strategy from Sohl-Dickstein et al. (2015).
|
394 |
+
"""
|
395 |
+
gradient = cond_fn(x, self._scale_timesteps(t), **model_kwargs)
|
396 |
+
new_mean = (
|
397 |
+
p_mean_var["mean"].float() + p_mean_var["variance"] * gradient.float()
|
398 |
+
)
|
399 |
+
return new_mean
|
400 |
+
|
401 |
+
def condition_score(self, cond_fn, p_mean_var, x, t, model_kwargs=None):
|
402 |
+
"""
|
403 |
+
Compute what the p_mean_variance output would have been, should the
|
404 |
+
model's score function be conditioned by cond_fn.
|
405 |
+
|
406 |
+
See condition_mean() for details on cond_fn.
|
407 |
+
|
408 |
+
Unlike condition_mean(), this instead uses the conditioning strategy
|
409 |
+
from Song et al (2020).
|
410 |
+
"""
|
411 |
+
alpha_bar = _extract_into_tensor(self.alphas_cumprod, t, x.shape)
|
412 |
+
|
413 |
+
eps = self._predict_eps_from_xstart(x, t, p_mean_var["pred_xstart"])
|
414 |
+
eps = eps - (1 - alpha_bar).sqrt() * cond_fn(
|
415 |
+
x, self._scale_timesteps(t), **model_kwargs
|
416 |
+
)
|
417 |
+
|
418 |
+
out = p_mean_var.copy()
|
419 |
+
out["pred_xstart"] = self._predict_xstart_from_eps(x, t, eps)
|
420 |
+
out["mean"], _, _ = self.q_posterior_mean_variance(
|
421 |
+
x_start=out["pred_xstart"], x_t=x, t=t
|
422 |
+
)
|
423 |
+
return out
|
424 |
+
|
425 |
+
def p_sample(
|
426 |
+
self,
|
427 |
+
model,
|
428 |
+
x,
|
429 |
+
t,
|
430 |
+
clip_denoised=True,
|
431 |
+
denoised_fn=None,
|
432 |
+
cond_fn=None,
|
433 |
+
model_kwargs=None,
|
434 |
+
analog_bit=None,
|
435 |
+
):
|
436 |
+
"""
|
437 |
+
Sample x_{t-1} from the model at the given timestep.
|
438 |
+
|
439 |
+
:param model: the model to sample from.
|
440 |
+
:param x: the current tensor at x_{t-1}.
|
441 |
+
:param t: the value of t, starting at 0 for the first diffusion step.
|
442 |
+
:param clip_denoised: if True, clip the x_start prediction to [-1, 1].
|
443 |
+
:param denoised_fn: if not None, a function which applies to the
|
444 |
+
x_start prediction before it is used to sample.
|
445 |
+
:param cond_fn: if not None, this is a gradient function that acts
|
446 |
+
similarly to the model.
|
447 |
+
:param model_kwargs: if not None, a dict of extra keyword arguments to
|
448 |
+
pass to the model. This can be used for conditioning.
|
449 |
+
:return: a dict containing the following keys:
|
450 |
+
- 'sample': a random sample from the model.
|
451 |
+
- 'pred_xstart': a prediction of x_0.
|
452 |
+
"""
|
453 |
+
out = self.p_mean_variance(
|
454 |
+
model,
|
455 |
+
x,
|
456 |
+
t,
|
457 |
+
clip_denoised=clip_denoised,
|
458 |
+
denoised_fn=denoised_fn,
|
459 |
+
model_kwargs=model_kwargs,
|
460 |
+
analog_bit=analog_bit,
|
461 |
+
)
|
462 |
+
noise = th.randn_like(x)
|
463 |
+
nonzero_mask = (
|
464 |
+
(t != 0).float().view(-1, *([1] * (len(x.shape) - 1)))
|
465 |
+
) # no noise when t == 0
|
466 |
+
if cond_fn is not None:
|
467 |
+
out["mean"] = self.condition_mean(
|
468 |
+
cond_fn, out, x, t, model_kwargs=model_kwargs
|
469 |
+
)
|
470 |
+
sample = out["mean"] + nonzero_mask * th.exp(0.5 * out["log_variance"]) * noise
|
471 |
+
return {"sample": sample, "pred_xstart": out["pred_xstart"]}
|
472 |
+
|
473 |
+
def p_sample_loop(
|
474 |
+
self,
|
475 |
+
model,
|
476 |
+
shape,
|
477 |
+
noise=None,
|
478 |
+
clip_denoised=True,
|
479 |
+
denoised_fn=None,
|
480 |
+
cond_fn=None,
|
481 |
+
model_kwargs=None,
|
482 |
+
device=None,
|
483 |
+
progress=False,
|
484 |
+
analog_bit=None,
|
485 |
+
):
|
486 |
+
"""
|
487 |
+
Generate samples from the model.
|
488 |
+
|
489 |
+
:param model: the model module.
|
490 |
+
:param shape: the shape of the samples, (N, C, H, W).
|
491 |
+
:param noise: if specified, the noise from the encoder to sample.
|
492 |
+
Should be of the same shape as `shape`.
|
493 |
+
:param clip_denoised: if True, clip x_start predictions to [-1, 1].
|
494 |
+
:param denoised_fn: if not None, a function which applies to the
|
495 |
+
x_start prediction before it is used to sample.
|
496 |
+
:param cond_fn: if not None, this is a gradient function that acts
|
497 |
+
similarly to the model.
|
498 |
+
:param model_kwargs: if not None, a dict of extra keyword arguments to
|
499 |
+
pass to the model. This can be used for conditioning.
|
500 |
+
:param device: if specified, the device to create the samples on.
|
501 |
+
If not specified, use a model parameter's device.
|
502 |
+
:param progress: if True, show a tqdm progress bar.
|
503 |
+
:return: a non-differentiable batch of samples.
|
504 |
+
"""
|
505 |
+
myfinal = []
|
506 |
+
final = None
|
507 |
+
for i, sample in tqdm(enumerate(self.p_sample_loop_progressive(
|
508 |
+
model,
|
509 |
+
shape,
|
510 |
+
noise=noise,
|
511 |
+
clip_denoised=clip_denoised,
|
512 |
+
denoised_fn=denoised_fn,
|
513 |
+
cond_fn=cond_fn,
|
514 |
+
model_kwargs=model_kwargs,
|
515 |
+
device=device,
|
516 |
+
progress=progress,
|
517 |
+
analog_bit=analog_bit,
|
518 |
+
))):
|
519 |
+
if i>970:
|
520 |
+
myfinal.append(sample['sample'])
|
521 |
+
final = sample
|
522 |
+
return th.stack(myfinal)
|
523 |
+
# return final["sample"]
|
524 |
+
|
525 |
+
def p_sample_loop_progressive(
|
526 |
+
self,
|
527 |
+
model,
|
528 |
+
shape,
|
529 |
+
noise=None,
|
530 |
+
clip_denoised=True,
|
531 |
+
denoised_fn=None,
|
532 |
+
cond_fn=None,
|
533 |
+
model_kwargs=None,
|
534 |
+
device=None,
|
535 |
+
progress=False,
|
536 |
+
analog_bit=None,
|
537 |
+
):
|
538 |
+
"""
|
539 |
+
Generate samples from the model and yield intermediate samples from
|
540 |
+
each timestep of diffusion.
|
541 |
+
|
542 |
+
Arguments are the same as p_sample_loop().
|
543 |
+
Returns a generator over dicts, where each dict is the return value of
|
544 |
+
p_sample().
|
545 |
+
"""
|
546 |
+
if device is None:
|
547 |
+
device = next(model.parameters()).device
|
548 |
+
assert isinstance(shape, (tuple, list))
|
549 |
+
if noise is not None:
|
550 |
+
img = noise
|
551 |
+
else:
|
552 |
+
img = th.randn(*shape, device=device)
|
553 |
+
indices = list(range(self.num_timesteps))[::-1]
|
554 |
+
|
555 |
+
if progress:
|
556 |
+
# Lazy import so that we don't depend on tqdm.
|
557 |
+
|
558 |
+
indices = tqdm(indices)
|
559 |
+
|
560 |
+
for i in indices:
|
561 |
+
t = th.tensor([i] * shape[0], device=device)
|
562 |
+
with th.no_grad():
|
563 |
+
out = self.p_sample(
|
564 |
+
model,
|
565 |
+
img,
|
566 |
+
t,
|
567 |
+
clip_denoised=clip_denoised,
|
568 |
+
denoised_fn=denoised_fn,
|
569 |
+
cond_fn=cond_fn,
|
570 |
+
model_kwargs=model_kwargs,
|
571 |
+
analog_bit=analog_bit,
|
572 |
+
)
|
573 |
+
yield out
|
574 |
+
img = out["sample"]
|
575 |
+
|
576 |
+
def ddim_sample(
|
577 |
+
self,
|
578 |
+
model,
|
579 |
+
x,
|
580 |
+
t,
|
581 |
+
clip_denoised=True,
|
582 |
+
denoised_fn=None,
|
583 |
+
cond_fn=None,
|
584 |
+
model_kwargs=None,
|
585 |
+
eta=0.0,
|
586 |
+
):
|
587 |
+
"""
|
588 |
+
Sample x_{t-1} from the model using DDIM.
|
589 |
+
|
590 |
+
Same usage as p_sample().
|
591 |
+
"""
|
592 |
+
out = self.p_mean_variance(
|
593 |
+
model,
|
594 |
+
x,
|
595 |
+
t,
|
596 |
+
clip_denoised=clip_denoised,
|
597 |
+
denoised_fn=denoised_fn,
|
598 |
+
model_kwargs=model_kwargs,
|
599 |
+
)
|
600 |
+
if cond_fn is not None:
|
601 |
+
out = self.condition_score(cond_fn, out, x, t, model_kwargs=model_kwargs)
|
602 |
+
|
603 |
+
# Usually our model outputs epsilon, but we re-derive it
|
604 |
+
# in case we used x_start or x_prev prediction.
|
605 |
+
eps = self._predict_eps_from_xstart(x, t, out["pred_xstart"])
|
606 |
+
|
607 |
+
alpha_bar = _extract_into_tensor(self.alphas_cumprod, t, x.shape)
|
608 |
+
alpha_bar_prev = _extract_into_tensor(self.alphas_cumprod_prev, t, x.shape)
|
609 |
+
sigma = (
|
610 |
+
eta
|
611 |
+
* th.sqrt((1 - alpha_bar_prev) / (1 - alpha_bar))
|
612 |
+
* th.sqrt(1 - alpha_bar / alpha_bar_prev)
|
613 |
+
)
|
614 |
+
# Equation 12.
|
615 |
+
noise = th.randn_like(x)
|
616 |
+
mean_pred = (
|
617 |
+
out["pred_xstart"] * th.sqrt(alpha_bar_prev)
|
618 |
+
+ th.sqrt(1 - alpha_bar_prev - sigma ** 2) * eps
|
619 |
+
)
|
620 |
+
nonzero_mask = (
|
621 |
+
(t != 0).float().view(-1, *([1] * (len(x.shape) - 1)))
|
622 |
+
) # no noise when t == 0
|
623 |
+
sample = mean_pred + nonzero_mask * sigma * noise
|
624 |
+
return {"sample": sample, "pred_xstart": out["pred_xstart"]}
|
625 |
+
|
626 |
+
def ddim_reverse_sample(
|
627 |
+
self,
|
628 |
+
model,
|
629 |
+
x,
|
630 |
+
t,
|
631 |
+
clip_denoised=True,
|
632 |
+
denoised_fn=None,
|
633 |
+
model_kwargs=None,
|
634 |
+
eta=0.0,
|
635 |
+
):
|
636 |
+
"""
|
637 |
+
Sample x_{t+1} from the model using DDIM reverse ODE.
|
638 |
+
"""
|
639 |
+
assert eta == 0.0, "Reverse ODE only for deterministic path"
|
640 |
+
out = self.p_mean_variance(
|
641 |
+
model,
|
642 |
+
x,
|
643 |
+
t,
|
644 |
+
clip_denoised=clip_denoised,
|
645 |
+
denoised_fn=denoised_fn,
|
646 |
+
model_kwargs=model_kwargs,
|
647 |
+
)
|
648 |
+
# Usually our model outputs epsilon, but we re-derive it
|
649 |
+
# in case we used x_start or x_prev prediction.
|
650 |
+
eps = (
|
651 |
+
_extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x.shape) * x
|
652 |
+
- out["pred_xstart"]
|
653 |
+
) / _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x.shape)
|
654 |
+
alpha_bar_next = _extract_into_tensor(self.alphas_cumprod_next, t, x.shape)
|
655 |
+
|
656 |
+
# Equation 12. reversed
|
657 |
+
mean_pred = (
|
658 |
+
out["pred_xstart"] * th.sqrt(alpha_bar_next)
|
659 |
+
+ th.sqrt(1 - alpha_bar_next) * eps
|
660 |
+
)
|
661 |
+
|
662 |
+
return {"sample": mean_pred, "pred_xstart": out["pred_xstart"]}
|
663 |
+
|
664 |
+
def ddim_sample_loop(
|
665 |
+
self,
|
666 |
+
model,
|
667 |
+
shape,
|
668 |
+
noise=None,
|
669 |
+
clip_denoised=True,
|
670 |
+
denoised_fn=None,
|
671 |
+
cond_fn=None,
|
672 |
+
model_kwargs=None,
|
673 |
+
device=None,
|
674 |
+
progress=False,
|
675 |
+
eta=0.0,
|
676 |
+
):
|
677 |
+
"""
|
678 |
+
Generate samples from the model using DDIM.
|
679 |
+
|
680 |
+
Same usage as p_sample_loop().
|
681 |
+
"""
|
682 |
+
# old code
|
683 |
+
# myfinal = []
|
684 |
+
# for i, sample in tqdm(enumerate(self.ddim_sample_loop_progressive(
|
685 |
+
# model,
|
686 |
+
# shape,
|
687 |
+
# noise=noise,
|
688 |
+
# clip_denoised=clip_denoised,
|
689 |
+
# denoised_fn=denoised_fn,
|
690 |
+
# cond_fn=cond_fn,
|
691 |
+
# model_kwargs=model_kwargs,
|
692 |
+
# device=device,
|
693 |
+
# progress=progress,
|
694 |
+
# eta=eta,
|
695 |
+
# ))):
|
696 |
+
# # if i>998:
|
697 |
+
# if i>498:
|
698 |
+
# # if i>98:
|
699 |
+
# myfinal.append(sample['sample'])
|
700 |
+
# return th.stack(myfinal)
|
701 |
+
|
702 |
+
# final = None
|
703 |
+
# for sample in self.ddim_sample_loop_progressive(
|
704 |
+
# model,
|
705 |
+
# shape,
|
706 |
+
# noise=noise,
|
707 |
+
# clip_denoised=clip_denoised,
|
708 |
+
# denoised_fn=denoised_fn,
|
709 |
+
# cond_fn=cond_fn,
|
710 |
+
# model_kwargs=model_kwargs,
|
711 |
+
# device=device,
|
712 |
+
# progress=progress,
|
713 |
+
# eta=eta,
|
714 |
+
# ):
|
715 |
+
# final = sample
|
716 |
+
# return final["sample"]
|
717 |
+
|
718 |
+
samples_list = list(tqdm(self.ddim_sample_loop_progressive(
|
719 |
+
model,
|
720 |
+
shape,
|
721 |
+
noise=noise,
|
722 |
+
clip_denoised=clip_denoised,
|
723 |
+
denoised_fn=denoised_fn,
|
724 |
+
cond_fn=cond_fn,
|
725 |
+
model_kwargs=model_kwargs,
|
726 |
+
device=device,
|
727 |
+
progress=progress,
|
728 |
+
eta=eta,
|
729 |
+
)))
|
730 |
+
|
731 |
+
last_sample = samples_list[-1]['sample']
|
732 |
+
|
733 |
+
return th.stack([last_sample])
|
734 |
+
|
735 |
+
def ddim_sample_loop_progressive(
|
736 |
+
self,
|
737 |
+
model,
|
738 |
+
shape,
|
739 |
+
noise=None,
|
740 |
+
clip_denoised=True,
|
741 |
+
denoised_fn=None,
|
742 |
+
cond_fn=None,
|
743 |
+
model_kwargs=None,
|
744 |
+
device=None,
|
745 |
+
progress=False,
|
746 |
+
eta=0.0,
|
747 |
+
):
|
748 |
+
"""
|
749 |
+
Use DDIM to sample from the model and yield intermediate samples from
|
750 |
+
each timestep of DDIM.
|
751 |
+
|
752 |
+
Same usage as p_sample_loop_progressive().
|
753 |
+
"""
|
754 |
+
if device is None:
|
755 |
+
device = next(model.parameters()).device
|
756 |
+
assert isinstance(shape, (tuple, list))
|
757 |
+
if noise is not None:
|
758 |
+
img = noise
|
759 |
+
else:
|
760 |
+
img = th.randn(*shape, device=device)
|
761 |
+
indices = list(range(self.num_timesteps))[::-1]
|
762 |
+
|
763 |
+
if progress:
|
764 |
+
# Lazy import so that we don't depend on tqdm.
|
765 |
+
from tqdm.auto import tqdm
|
766 |
+
|
767 |
+
indices = tqdm(indices)
|
768 |
+
|
769 |
+
for i in indices:
|
770 |
+
t = th.tensor([i] * shape[0], device=device)
|
771 |
+
with th.no_grad():
|
772 |
+
out = self.ddim_sample(
|
773 |
+
model,
|
774 |
+
img,
|
775 |
+
t,
|
776 |
+
clip_denoised=clip_denoised,
|
777 |
+
denoised_fn=denoised_fn,
|
778 |
+
cond_fn=cond_fn,
|
779 |
+
model_kwargs=model_kwargs,
|
780 |
+
eta=eta,
|
781 |
+
)
|
782 |
+
yield out
|
783 |
+
img = out["sample"]
|
784 |
+
|
785 |
+
def _vb_terms_bpd(
|
786 |
+
self, model, x_start, x_t, t, padding_mask, clip_denoised=True, model_kwargs=None,
|
787 |
+
):
|
788 |
+
"""
|
789 |
+
Get a term for the variational lower-bound.
|
790 |
+
|
791 |
+
The resulting units are bits (rather than nats, as one might expect).
|
792 |
+
This allows for comparison to other papers.
|
793 |
+
|
794 |
+
:return: a dict with the following keys:
|
795 |
+
- 'output': a shape [N] tensor of NLLs or KLs.
|
796 |
+
- 'pred_xstart': the x_0 predictions.
|
797 |
+
"""
|
798 |
+
true_mean, _, true_log_variance_clipped = self.q_posterior_mean_variance(
|
799 |
+
x_start=x_start, x_t=x_t, t=t
|
800 |
+
)
|
801 |
+
out = self.p_mean_variance(
|
802 |
+
model, x_t, t, clip_denoised=clip_denoised, model_kwargs=model_kwargs
|
803 |
+
)
|
804 |
+
kl = normal_kl(
|
805 |
+
true_mean, true_log_variance_clipped, out["mean"], out["log_variance"]
|
806 |
+
)
|
807 |
+
kl = mean_flat(kl, padding_mask) / np.log(2.0)
|
808 |
+
|
809 |
+
decoder_nll = -discretized_gaussian_log_likelihood(
|
810 |
+
x_start, means=out["mean"], log_scales=0.5 * out["log_variance"]
|
811 |
+
)
|
812 |
+
assert decoder_nll.shape == x_start.shape
|
813 |
+
decoder_nll = mean_flat(decoder_nll, padding_mask) / np.log(2.0)
|
814 |
+
|
815 |
+
# At the first timestep return the decoder NLL,
|
816 |
+
# otherwise return KL(q(x_{t-1}|x_t,x_0) || p(x_{t-1}|x_t))
|
817 |
+
# output = th.where((t == 0), decoder_nll, kl)
|
818 |
+
output = kl
|
819 |
+
return {"output": output, "pred_xstart": out["pred_xstart"]}
|
820 |
+
|
821 |
+
def training_losses(self, model, x_start, t, model_kwargs, analog_bit, noise=None):
|
822 |
+
"""
|
823 |
+
Compute training losses for a single timestep.
|
824 |
+
|
825 |
+
:param model: the model to evaluate loss on.
|
826 |
+
:param x_start: the [N x C x ...] tensor of inputs.
|
827 |
+
:param t: a batch of timestep indices.
|
828 |
+
:param model_kwargs: if not None, a dict of extra keyword arguments to
|
829 |
+
pass to the model. This can be used for conditioning.
|
830 |
+
:param noise: if specified, the specific Gaussian noise to try to remove.
|
831 |
+
:return: a dict with the key "loss" containing a tensor of shape [N].
|
832 |
+
Some mean or variance settings may also have other keys.
|
833 |
+
"""
|
834 |
+
if model_kwargs is None:
|
835 |
+
model_kwargs = {}
|
836 |
+
if noise is None:
|
837 |
+
noise = th.randn_like(x_start)
|
838 |
+
x_t = self.q_sample(x_start, t, noise=noise)
|
839 |
+
|
840 |
+
terms = {}
|
841 |
+
tmp_mask = (1 - model_kwargs['src_key_padding_mask'])
|
842 |
+
|
843 |
+
if self.loss_type == LossType.KL or self.loss_type == LossType.RESCALED_KL:
|
844 |
+
terms["loss"] = self._vb_terms_bpd(
|
845 |
+
model=model,
|
846 |
+
x_start=x_start,
|
847 |
+
x_t=x_t,
|
848 |
+
padding_mask = tmp_mask,
|
849 |
+
t=t,
|
850 |
+
clip_denoised=False,
|
851 |
+
model_kwargs=model_kwargs,
|
852 |
+
)["output"]
|
853 |
+
if self.loss_type == LossType.RESCALED_KL:
|
854 |
+
terms["loss"] *= self.num_timesteps
|
855 |
+
elif self.loss_type == LossType.MSE or self.loss_type == LossType.RESCALED_MSE:
|
856 |
+
xtalpha = _extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape).permute([0,2,1])
|
857 |
+
epsalpha = _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape).permute([0,2,1])
|
858 |
+
model_output_dec, model_output_bin = model(x_t, self._scale_timesteps(t), xtalpha=xtalpha, epsalpha=epsalpha, **model_kwargs)
|
859 |
+
# model_output_dec = model(x_t, self._scale_timesteps(t), **model_kwargs)
|
860 |
+
|
861 |
+
if self.model_var_type in [
|
862 |
+
ModelVarType.LEARNED,
|
863 |
+
ModelVarType.LEARNED_RANGE,
|
864 |
+
]:
|
865 |
+
B, C = x_t.shape[:2]
|
866 |
+
assert model_output.shape == (B, C * 2, *x_t.shape[2:])
|
867 |
+
model_output, model_var_values = th.split(model_output, C, dim=1)
|
868 |
+
# Learn the variance using the variational bound, but don't let
|
869 |
+
# it affect our mean prediction.
|
870 |
+
frozen_out = th.cat([model_output.detach(), model_var_values], dim=1)
|
871 |
+
terms["vb"] = self._vb_terms_bpd(
|
872 |
+
model=lambda *args, r=frozen_out: r,
|
873 |
+
x_start=x_start,
|
874 |
+
x_t=x_t,
|
875 |
+
padding_mask = tmp_mask,
|
876 |
+
t=t,
|
877 |
+
clip_denoised=False,
|
878 |
+
)["output"]
|
879 |
+
if self.loss_type == LossType.RESCALED_MSE:
|
880 |
+
# Divide by 1000 for equivalence with initial implementation.
|
881 |
+
# Without a factor of 1/1000, the VB term hurts the MSE term.
|
882 |
+
terms["vb"] *= self.num_timesteps / 1000.0
|
883 |
+
|
884 |
+
target = {
|
885 |
+
ModelMeanType.PREVIOUS_X: self.q_posterior_mean_variance(
|
886 |
+
x_start=x_start, x_t=x_t, t=t
|
887 |
+
)[0],
|
888 |
+
ModelMeanType.START_X: x_start,
|
889 |
+
ModelMeanType.EPSILON: noise,
|
890 |
+
}[self.model_mean_type]
|
891 |
+
|
892 |
+
if not analog_bit:
|
893 |
+
def dec2bin(xinp, bits):
|
894 |
+
mask = 2 ** th.arange(bits - 1, -1, -1).to(xinp.device, xinp.dtype)
|
895 |
+
return xinp.unsqueeze(-1).bitwise_and(mask).ne(0).float()
|
896 |
+
bin_target = x_start.detach()
|
897 |
+
bin_target = (bin_target/2 + 0.5) # -> [0,1]
|
898 |
+
bin_target = bin_target * 256 #-> [0, 256]
|
899 |
+
bin_target = dec2bin(bin_target.permute([0,2,1]).round().int(), 8)
|
900 |
+
bin_target = bin_target.reshape([target.shape[0], target.shape[2], 16]).permute([0,2,1])
|
901 |
+
t_weights = (t<10).cuda().unsqueeze(1).unsqueeze(2)
|
902 |
+
t_weights = t_weights * (t_weights.shape[0]/max(1, t_weights.sum()))
|
903 |
+
bin_target[bin_target==0] = -1
|
904 |
+
assert model_output_bin.shape == bin_target.shape
|
905 |
+
|
906 |
+
assert model_output_dec.shape == target.shape == x_start.shape
|
907 |
+
|
908 |
+
if not analog_bit:
|
909 |
+
terms["mse_bin"] = mean_flat(((bin_target - model_output_bin) ** 2) * t_weights, tmp_mask)
|
910 |
+
terms["mse_dec"] = mean_flat(((target - model_output_dec) ** 2), tmp_mask)
|
911 |
+
|
912 |
+
if "vb" in terms:
|
913 |
+
terms["loss"] = terms["mse"] + terms["vb"]
|
914 |
+
else:
|
915 |
+
if not analog_bit:
|
916 |
+
terms["loss"] = terms["mse_dec"] + terms["mse_bin"]
|
917 |
+
else:
|
918 |
+
terms["loss"] = terms["mse_dec"]
|
919 |
+
else:
|
920 |
+
raise NotImplementedError(self.loss_type)
|
921 |
+
|
922 |
+
return terms
|
923 |
+
|
924 |
+
def _prior_bpd(self, x_start):
|
925 |
+
"""
|
926 |
+
Get the prior KL term for the variational lower-bound, measured in
|
927 |
+
bits-per-dim.
|
928 |
+
|
929 |
+
This term can't be optimized, as it only depends on the encoder.
|
930 |
+
|
931 |
+
:param x_start: the [N x C x ...] tensor of inputs.
|
932 |
+
:return: a batch of [N] KL values (in bits), one per batch element.
|
933 |
+
"""
|
934 |
+
batch_size = x_start.shape[0]
|
935 |
+
t = th.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device)
|
936 |
+
qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t)
|
937 |
+
kl_prior = normal_kl(
|
938 |
+
mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0
|
939 |
+
)
|
940 |
+
return mean_flat(kl_prior) / np.log(2.0)
|
941 |
+
|
942 |
+
def calc_bpd_loop(self, model, x_start, clip_denoised=True, model_kwargs=None):
|
943 |
+
"""
|
944 |
+
Compute the entire variational lower-bound, measured in bits-per-dim,
|
945 |
+
as well as other related quantities.
|
946 |
+
|
947 |
+
:param model: the model to evaluate loss on.
|
948 |
+
:param x_start: the [N x C x ...] tensor of inputs.
|
949 |
+
:param clip_denoised: if True, clip denoised samples.
|
950 |
+
:param model_kwargs: if not None, a dict of extra keyword arguments to
|
951 |
+
pass to the model. This can be used for conditioning.
|
952 |
+
|
953 |
+
:return: a dict containing the following keys:
|
954 |
+
- total_bpd: the total variational lower-bound, per batch element.
|
955 |
+
- prior_bpd: the prior term in the lower-bound.
|
956 |
+
- vb: an [N x T] tensor of terms in the lower-bound.
|
957 |
+
- xstart_mse: an [N x T] tensor of x_0 MSEs for each timestep.
|
958 |
+
- mse: an [N x T] tensor of epsilon MSEs for each timestep.
|
959 |
+
"""
|
960 |
+
device = x_start.device
|
961 |
+
batch_size = x_start.shape[0]
|
962 |
+
|
963 |
+
vb = []
|
964 |
+
xstart_mse = []
|
965 |
+
mse = []
|
966 |
+
for t in list(range(self.num_timesteps))[::-1]:
|
967 |
+
t_batch = th.tensor([t] * batch_size, device=device)
|
968 |
+
noise = th.randn_like(x_start)
|
969 |
+
x_t = self.q_sample(x_start=x_start, t=t_batch, noise=noise)
|
970 |
+
# Calculate VLB term at the current timestep
|
971 |
+
with th.no_grad():
|
972 |
+
out = self._vb_terms_bpd(
|
973 |
+
model,
|
974 |
+
x_start=x_start,
|
975 |
+
x_t=x_t,
|
976 |
+
t=t_batch,
|
977 |
+
clip_denoised=clip_denoised,
|
978 |
+
model_kwargs=model_kwargs,
|
979 |
+
)
|
980 |
+
vb.append(out["output"])
|
981 |
+
xstart_mse.append(mean_flat((out["pred_xstart"] - x_start) ** 2))
|
982 |
+
eps = self._predict_eps_from_xstart(x_t, t_batch, out["pred_xstart"])
|
983 |
+
mse.append(mean_flat((eps - noise) ** 2))
|
984 |
+
|
985 |
+
vb = th.stack(vb, dim=1)
|
986 |
+
xstart_mse = th.stack(xstart_mse, dim=1)
|
987 |
+
mse = th.stack(mse, dim=1)
|
988 |
+
|
989 |
+
prior_bpd = self._prior_bpd(x_start)
|
990 |
+
total_bpd = vb.sum(dim=1) + prior_bpd
|
991 |
+
return {
|
992 |
+
"total_bpd": total_bpd,
|
993 |
+
"prior_bpd": prior_bpd,
|
994 |
+
"vb": vb,
|
995 |
+
"xstart_mse": xstart_mse,
|
996 |
+
"mse": mse,
|
997 |
+
}
|
998 |
+
|
999 |
+
|
1000 |
+
def _extract_into_tensor(arr, timesteps, broadcast_shape):
|
1001 |
+
"""
|
1002 |
+
Extract values from a 1-D numpy array for a batch of indices.
|
1003 |
+
|
1004 |
+
:param arr: the 1-D numpy array.
|
1005 |
+
:param timesteps: a tensor of indices into the array to extract.
|
1006 |
+
:param broadcast_shape: a larger shape of K dimensions with the batch
|
1007 |
+
dimension equal to the length of timesteps.
|
1008 |
+
:return: a tensor of shape [batch_size, 1, ...] where the shape has K dims.
|
1009 |
+
"""
|
1010 |
+
res = th.from_numpy(arr).to(device=timesteps.device)[timesteps].float()
|
1011 |
+
while len(res.shape) < len(broadcast_shape):
|
1012 |
+
res = res[..., None]
|
1013 |
+
return res.expand(broadcast_shape)
|
house_diffusion/logger.py
ADDED
@@ -0,0 +1,496 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Logger copied from OpenAI baselines to avoid extra RL-based dependencies:
|
3 |
+
https://github.com/openai/baselines/blob/ea25b9e8b234e6ee1bca43083f8f3cf974143998/baselines/logger.py
|
4 |
+
"""
|
5 |
+
|
6 |
+
import os
|
7 |
+
import sys
|
8 |
+
import shutil
|
9 |
+
import os.path as osp
|
10 |
+
import json
|
11 |
+
import time
|
12 |
+
import datetime
|
13 |
+
import tempfile
|
14 |
+
import warnings
|
15 |
+
from collections import defaultdict
|
16 |
+
from contextlib import contextmanager
|
17 |
+
|
18 |
+
DEBUG = 10
|
19 |
+
INFO = 20
|
20 |
+
WARN = 30
|
21 |
+
ERROR = 40
|
22 |
+
|
23 |
+
DISABLED = 50
|
24 |
+
|
25 |
+
|
26 |
+
class KVWriter(object):
|
27 |
+
def writekvs(self, kvs):
|
28 |
+
raise NotImplementedError
|
29 |
+
|
30 |
+
|
31 |
+
class SeqWriter(object):
|
32 |
+
def writeseq(self, seq):
|
33 |
+
raise NotImplementedError
|
34 |
+
|
35 |
+
|
36 |
+
class HumanOutputFormat(KVWriter, SeqWriter):
|
37 |
+
def __init__(self, filename_or_file):
|
38 |
+
if isinstance(filename_or_file, str):
|
39 |
+
self.file = open(filename_or_file, "wt")
|
40 |
+
self.own_file = True
|
41 |
+
else:
|
42 |
+
assert hasattr(filename_or_file, "read"), (
|
43 |
+
"expected file or str, got %s" % filename_or_file
|
44 |
+
)
|
45 |
+
self.file = filename_or_file
|
46 |
+
self.own_file = False
|
47 |
+
|
48 |
+
def writekvs(self, kvs):
|
49 |
+
# Create strings for printing
|
50 |
+
key2str = {}
|
51 |
+
for (key, val) in sorted(kvs.items()):
|
52 |
+
if hasattr(val, "__float__"):
|
53 |
+
valstr = "%-8.3g" % val
|
54 |
+
else:
|
55 |
+
valstr = str(val)
|
56 |
+
key2str[self._truncate(key)] = self._truncate(valstr)
|
57 |
+
|
58 |
+
# Find max widths
|
59 |
+
if len(key2str) == 0:
|
60 |
+
print("WARNING: tried to write empty key-value dict")
|
61 |
+
return
|
62 |
+
else:
|
63 |
+
keywidth = max(map(len, key2str.keys()))
|
64 |
+
valwidth = max(map(len, key2str.values()))
|
65 |
+
|
66 |
+
# Write out the data
|
67 |
+
dashes = "-" * (keywidth + valwidth + 7)
|
68 |
+
lines = [dashes]
|
69 |
+
for (key, val) in sorted(key2str.items(), key=lambda kv: kv[0].lower()):
|
70 |
+
lines.append(
|
71 |
+
"| %s%s | %s%s |"
|
72 |
+
% (key, " " * (keywidth - len(key)), val, " " * (valwidth - len(val)))
|
73 |
+
)
|
74 |
+
lines.append(dashes)
|
75 |
+
self.file.write("\n".join(lines) + "\n")
|
76 |
+
|
77 |
+
# Flush the output to the file
|
78 |
+
self.file.flush()
|
79 |
+
|
80 |
+
def _truncate(self, s):
|
81 |
+
maxlen = 30
|
82 |
+
return s[: maxlen - 3] + "..." if len(s) > maxlen else s
|
83 |
+
|
84 |
+
def writeseq(self, seq):
|
85 |
+
seq = list(seq)
|
86 |
+
for (i, elem) in enumerate(seq):
|
87 |
+
self.file.write(elem)
|
88 |
+
if i < len(seq) - 1: # add space unless this is the last one
|
89 |
+
self.file.write(" ")
|
90 |
+
self.file.write("\n")
|
91 |
+
self.file.flush()
|
92 |
+
|
93 |
+
def close(self):
|
94 |
+
if self.own_file:
|
95 |
+
self.file.close()
|
96 |
+
|
97 |
+
|
98 |
+
class JSONOutputFormat(KVWriter):
|
99 |
+
def __init__(self, filename):
|
100 |
+
self.file = open(filename, "wt")
|
101 |
+
|
102 |
+
def writekvs(self, kvs):
|
103 |
+
for k, v in sorted(kvs.items()):
|
104 |
+
if hasattr(v, "dtype"):
|
105 |
+
kvs[k] = float(v)
|
106 |
+
self.file.write(json.dumps(kvs) + "\n")
|
107 |
+
self.file.flush()
|
108 |
+
|
109 |
+
def close(self):
|
110 |
+
self.file.close()
|
111 |
+
|
112 |
+
|
113 |
+
class CSVOutputFormat(KVWriter):
|
114 |
+
def __init__(self, filename):
|
115 |
+
self.file = open(filename, "w+t")
|
116 |
+
self.keys = []
|
117 |
+
self.sep = ","
|
118 |
+
|
119 |
+
def writekvs(self, kvs):
|
120 |
+
# Add our current row to the history
|
121 |
+
extra_keys = list(kvs.keys() - self.keys)
|
122 |
+
extra_keys.sort()
|
123 |
+
if extra_keys:
|
124 |
+
self.keys.extend(extra_keys)
|
125 |
+
self.file.seek(0)
|
126 |
+
lines = self.file.readlines()
|
127 |
+
self.file.seek(0)
|
128 |
+
for (i, k) in enumerate(self.keys):
|
129 |
+
if i > 0:
|
130 |
+
self.file.write(",")
|
131 |
+
self.file.write(k)
|
132 |
+
self.file.write("\n")
|
133 |
+
for line in lines[1:]:
|
134 |
+
self.file.write(line[:-1])
|
135 |
+
self.file.write(self.sep * len(extra_keys))
|
136 |
+
self.file.write("\n")
|
137 |
+
for (i, k) in enumerate(self.keys):
|
138 |
+
if i > 0:
|
139 |
+
self.file.write(",")
|
140 |
+
v = kvs.get(k)
|
141 |
+
if v is not None:
|
142 |
+
self.file.write(str(v))
|
143 |
+
self.file.write("\n")
|
144 |
+
self.file.flush()
|
145 |
+
|
146 |
+
def close(self):
|
147 |
+
self.file.close()
|
148 |
+
|
149 |
+
|
150 |
+
class TensorBoardOutputFormat(KVWriter):
|
151 |
+
"""
|
152 |
+
Dumps key/value pairs into TensorBoard's numeric format.
|
153 |
+
"""
|
154 |
+
|
155 |
+
def __init__(self, dir):
|
156 |
+
os.makedirs(dir, exist_ok=True)
|
157 |
+
self.dir = dir
|
158 |
+
self.step = 1
|
159 |
+
prefix = "events"
|
160 |
+
path = osp.join(osp.abspath(dir), prefix)
|
161 |
+
import tensorflow as tf
|
162 |
+
from tensorflow.python import pywrap_tensorflow
|
163 |
+
from tensorflow.core.util import event_pb2
|
164 |
+
from tensorflow.python.util import compat
|
165 |
+
|
166 |
+
self.tf = tf
|
167 |
+
self.event_pb2 = event_pb2
|
168 |
+
self.pywrap_tensorflow = pywrap_tensorflow
|
169 |
+
self.writer = pywrap_tensorflow.EventsWriter(compat.as_bytes(path))
|
170 |
+
|
171 |
+
def writekvs(self, kvs):
|
172 |
+
def summary_val(k, v):
|
173 |
+
kwargs = {"tag": k, "simple_value": float(v)}
|
174 |
+
return self.tf.Summary.Value(**kwargs)
|
175 |
+
|
176 |
+
summary = self.tf.Summary(value=[summary_val(k, v) for k, v in kvs.items()])
|
177 |
+
event = self.event_pb2.Event(wall_time=time.time(), summary=summary)
|
178 |
+
event.step = (
|
179 |
+
self.step
|
180 |
+
) # is there any reason why you'd want to specify the step?
|
181 |
+
self.writer.WriteEvent(event)
|
182 |
+
self.writer.Flush()
|
183 |
+
self.step += 1
|
184 |
+
|
185 |
+
def close(self):
|
186 |
+
if self.writer:
|
187 |
+
self.writer.Close()
|
188 |
+
self.writer = None
|
189 |
+
|
190 |
+
|
191 |
+
def make_output_format(format, ev_dir, log_suffix=""):
|
192 |
+
os.makedirs(ev_dir, exist_ok=True)
|
193 |
+
if format == "stdout":
|
194 |
+
return HumanOutputFormat(sys.stdout)
|
195 |
+
elif format == "log":
|
196 |
+
return HumanOutputFormat(osp.join(ev_dir, "log%s.txt" % log_suffix))
|
197 |
+
elif format == "json":
|
198 |
+
return JSONOutputFormat(osp.join(ev_dir, "progress%s.json" % log_suffix))
|
199 |
+
elif format == "csv":
|
200 |
+
return CSVOutputFormat(osp.join(ev_dir, "progress%s.csv" % log_suffix))
|
201 |
+
elif format == "tensorboard":
|
202 |
+
return TensorBoardOutputFormat(osp.join(ev_dir, "tb%s" % log_suffix))
|
203 |
+
else:
|
204 |
+
raise ValueError("Unknown format specified: %s" % (format,))
|
205 |
+
|
206 |
+
|
207 |
+
# ================================================================
|
208 |
+
# API
|
209 |
+
# ================================================================
|
210 |
+
|
211 |
+
|
212 |
+
def logkv(key, val):
|
213 |
+
"""
|
214 |
+
Log a value of some diagnostic
|
215 |
+
Call this once for each diagnostic quantity, each iteration
|
216 |
+
If called many times, last value will be used.
|
217 |
+
"""
|
218 |
+
get_current().logkv(key, val)
|
219 |
+
|
220 |
+
|
221 |
+
def logkv_mean(key, val):
|
222 |
+
"""
|
223 |
+
The same as logkv(), but if called many times, values averaged.
|
224 |
+
"""
|
225 |
+
get_current().logkv_mean(key, val)
|
226 |
+
|
227 |
+
|
228 |
+
def logkvs(d):
|
229 |
+
"""
|
230 |
+
Log a dictionary of key-value pairs
|
231 |
+
"""
|
232 |
+
for (k, v) in d.items():
|
233 |
+
logkv(k, v)
|
234 |
+
|
235 |
+
|
236 |
+
def dumpkvs():
|
237 |
+
"""
|
238 |
+
Write all of the diagnostics from the current iteration
|
239 |
+
"""
|
240 |
+
return get_current().dumpkvs()
|
241 |
+
|
242 |
+
|
243 |
+
def getkvs():
|
244 |
+
return get_current().name2val
|
245 |
+
|
246 |
+
|
247 |
+
def log(*args, level=INFO):
|
248 |
+
"""
|
249 |
+
Write the sequence of args, with no separators, to the console and output files (if you've configured an output file).
|
250 |
+
"""
|
251 |
+
get_current().log(*args, level=level)
|
252 |
+
|
253 |
+
|
254 |
+
def debug(*args):
|
255 |
+
log(*args, level=DEBUG)
|
256 |
+
|
257 |
+
|
258 |
+
def info(*args):
|
259 |
+
log(*args, level=INFO)
|
260 |
+
|
261 |
+
|
262 |
+
def warn(*args):
|
263 |
+
log(*args, level=WARN)
|
264 |
+
|
265 |
+
|
266 |
+
def error(*args):
|
267 |
+
log(*args, level=ERROR)
|
268 |
+
|
269 |
+
|
270 |
+
def set_level(level):
|
271 |
+
"""
|
272 |
+
Set logging threshold on current logger.
|
273 |
+
"""
|
274 |
+
get_current().set_level(level)
|
275 |
+
|
276 |
+
|
277 |
+
def set_comm(comm):
|
278 |
+
get_current().set_comm(comm)
|
279 |
+
|
280 |
+
|
281 |
+
def get_dir():
|
282 |
+
"""
|
283 |
+
Get directory that log files are being written to.
|
284 |
+
will be None if there is no output directory (i.e., if you didn't call start)
|
285 |
+
"""
|
286 |
+
return get_current().get_dir()
|
287 |
+
|
288 |
+
|
289 |
+
record_tabular = logkv
|
290 |
+
dump_tabular = dumpkvs
|
291 |
+
|
292 |
+
|
293 |
+
@contextmanager
|
294 |
+
def profile_kv(scopename):
|
295 |
+
logkey = "wait_" + scopename
|
296 |
+
tstart = time.time()
|
297 |
+
try:
|
298 |
+
yield
|
299 |
+
finally:
|
300 |
+
get_current().name2val[logkey] += time.time() - tstart
|
301 |
+
|
302 |
+
|
303 |
+
def profile(n):
|
304 |
+
"""
|
305 |
+
Usage:
|
306 |
+
@profile("my_func")
|
307 |
+
def my_func(): code
|
308 |
+
"""
|
309 |
+
|
310 |
+
def decorator_with_name(func):
|
311 |
+
def func_wrapper(*args, **kwargs):
|
312 |
+
with profile_kv(n):
|
313 |
+
return func(*args, **kwargs)
|
314 |
+
|
315 |
+
return func_wrapper
|
316 |
+
|
317 |
+
return decorator_with_name
|
318 |
+
|
319 |
+
|
320 |
+
# ================================================================
|
321 |
+
# Backend
|
322 |
+
# ================================================================
|
323 |
+
|
324 |
+
|
325 |
+
def get_current():
|
326 |
+
if Logger.CURRENT is None:
|
327 |
+
_configure_default_logger()
|
328 |
+
|
329 |
+
return Logger.CURRENT
|
330 |
+
|
331 |
+
|
332 |
+
class Logger(object):
|
333 |
+
DEFAULT = None # A logger with no output files. (See right below class definition)
|
334 |
+
# So that you can still log to the terminal without setting up any output files
|
335 |
+
CURRENT = None # Current logger being used by the free functions above
|
336 |
+
|
337 |
+
def __init__(self, dir, output_formats, comm=None):
|
338 |
+
self.name2val = defaultdict(float) # values this iteration
|
339 |
+
self.name2cnt = defaultdict(int)
|
340 |
+
self.level = INFO
|
341 |
+
self.dir = dir
|
342 |
+
self.output_formats = output_formats
|
343 |
+
self.comm = comm
|
344 |
+
|
345 |
+
# Logging API, forwarded
|
346 |
+
# ----------------------------------------
|
347 |
+
def logkv(self, key, val):
|
348 |
+
self.name2val[key] = val
|
349 |
+
|
350 |
+
def logkv_mean(self, key, val):
|
351 |
+
oldval, cnt = self.name2val[key], self.name2cnt[key]
|
352 |
+
self.name2val[key] = oldval * cnt / (cnt + 1) + val / (cnt + 1)
|
353 |
+
self.name2cnt[key] = cnt + 1
|
354 |
+
|
355 |
+
def dumpkvs(self):
|
356 |
+
if self.comm is None:
|
357 |
+
d = self.name2val
|
358 |
+
else:
|
359 |
+
d = mpi_weighted_mean(
|
360 |
+
self.comm,
|
361 |
+
{
|
362 |
+
name: (val, self.name2cnt.get(name, 1))
|
363 |
+
for (name, val) in self.name2val.items()
|
364 |
+
},
|
365 |
+
)
|
366 |
+
if self.comm.rank != 0:
|
367 |
+
d["dummy"] = 1 # so we don't get a warning about empty dict
|
368 |
+
out = d.copy() # Return the dict for unit testing purposes
|
369 |
+
for fmt in self.output_formats:
|
370 |
+
if isinstance(fmt, KVWriter):
|
371 |
+
fmt.writekvs(d)
|
372 |
+
self.name2val.clear()
|
373 |
+
self.name2cnt.clear()
|
374 |
+
return out
|
375 |
+
|
376 |
+
def log(self, *args, level=INFO):
|
377 |
+
if self.level <= level:
|
378 |
+
self._do_log(args)
|
379 |
+
|
380 |
+
# Configuration
|
381 |
+
# ----------------------------------------
|
382 |
+
def set_level(self, level):
|
383 |
+
self.level = level
|
384 |
+
|
385 |
+
def set_comm(self, comm):
|
386 |
+
self.comm = comm
|
387 |
+
|
388 |
+
def get_dir(self):
|
389 |
+
return self.dir
|
390 |
+
|
391 |
+
def close(self):
|
392 |
+
for fmt in self.output_formats:
|
393 |
+
fmt.close()
|
394 |
+
|
395 |
+
# Misc
|
396 |
+
# ----------------------------------------
|
397 |
+
def _do_log(self, args):
|
398 |
+
for fmt in self.output_formats:
|
399 |
+
if isinstance(fmt, SeqWriter):
|
400 |
+
fmt.writeseq(map(str, args))
|
401 |
+
|
402 |
+
|
403 |
+
def get_rank_without_mpi_import():
|
404 |
+
# check environment variables here instead of importing mpi4py
|
405 |
+
# to avoid calling MPI_Init() when this module is imported
|
406 |
+
for varname in ["PMI_RANK", "OMPI_COMM_WORLD_RANK"]:
|
407 |
+
if varname in os.environ:
|
408 |
+
return int(os.environ[varname])
|
409 |
+
return 0
|
410 |
+
|
411 |
+
|
412 |
+
def mpi_weighted_mean(comm, local_name2valcount):
|
413 |
+
"""
|
414 |
+
Copied from: https://github.com/openai/baselines/blob/ea25b9e8b234e6ee1bca43083f8f3cf974143998/baselines/common/mpi_util.py#L110
|
415 |
+
Perform a weighted average over dicts that are each on a different node
|
416 |
+
Input: local_name2valcount: dict mapping key -> (value, count)
|
417 |
+
Returns: key -> mean
|
418 |
+
"""
|
419 |
+
all_name2valcount = comm.gather(local_name2valcount)
|
420 |
+
if comm.rank == 0:
|
421 |
+
name2sum = defaultdict(float)
|
422 |
+
name2count = defaultdict(float)
|
423 |
+
for n2vc in all_name2valcount:
|
424 |
+
for (name, (val, count)) in n2vc.items():
|
425 |
+
try:
|
426 |
+
val = float(val)
|
427 |
+
except ValueError:
|
428 |
+
if comm.rank == 0:
|
429 |
+
warnings.warn(
|
430 |
+
"WARNING: tried to compute mean on non-float {}={}".format(
|
431 |
+
name, val
|
432 |
+
)
|
433 |
+
)
|
434 |
+
else:
|
435 |
+
name2sum[name] += val * count
|
436 |
+
name2count[name] += count
|
437 |
+
return {name: name2sum[name] / name2count[name] for name in name2sum}
|
438 |
+
else:
|
439 |
+
return {}
|
440 |
+
|
441 |
+
|
442 |
+
def configure(dir=None, format_strs=None, comm=None, log_suffix=""):
|
443 |
+
"""
|
444 |
+
If comm is provided, average all numerical stats across that comm
|
445 |
+
"""
|
446 |
+
if dir is None:
|
447 |
+
dir = os.getenv("OPENAI_LOGDIR")
|
448 |
+
if dir is None:
|
449 |
+
dir = osp.join(
|
450 |
+
# tempfile.gettempdir(),
|
451 |
+
'ckpts',
|
452 |
+
datetime.datetime.now().strftime("openai_%Y_%m_%d_%H_%M_%S_%f"),
|
453 |
+
)
|
454 |
+
assert isinstance(dir, str)
|
455 |
+
dir = os.path.expanduser(dir)
|
456 |
+
os.makedirs(os.path.expanduser(dir), exist_ok=True)
|
457 |
+
|
458 |
+
rank = get_rank_without_mpi_import()
|
459 |
+
if rank > 0:
|
460 |
+
log_suffix = log_suffix + "-rank%03i" % rank
|
461 |
+
|
462 |
+
if format_strs is None:
|
463 |
+
if rank == 0:
|
464 |
+
format_strs = os.getenv("OPENAI_LOG_FORMAT", "stdout,log,csv").split(",")
|
465 |
+
else:
|
466 |
+
format_strs = os.getenv("OPENAI_LOG_FORMAT_MPI", "log").split(",")
|
467 |
+
format_strs = filter(None, format_strs)
|
468 |
+
output_formats = [make_output_format(f, dir, log_suffix) for f in format_strs]
|
469 |
+
|
470 |
+
Logger.CURRENT = Logger(dir=dir, output_formats=output_formats, comm=comm)
|
471 |
+
if output_formats:
|
472 |
+
log("Logging to %s" % dir)
|
473 |
+
|
474 |
+
|
475 |
+
def _configure_default_logger():
|
476 |
+
configure()
|
477 |
+
Logger.DEFAULT = Logger.CURRENT
|
478 |
+
|
479 |
+
|
480 |
+
def reset():
|
481 |
+
if Logger.CURRENT is not Logger.DEFAULT:
|
482 |
+
Logger.CURRENT.close()
|
483 |
+
Logger.CURRENT = Logger.DEFAULT
|
484 |
+
log("Reset logger")
|
485 |
+
|
486 |
+
|
487 |
+
@contextmanager
|
488 |
+
def scoped_configure(dir=None, format_strs=None, comm=None):
|
489 |
+
prevlogger = Logger.CURRENT
|
490 |
+
configure(dir=dir, format_strs=format_strs, comm=comm)
|
491 |
+
try:
|
492 |
+
yield
|
493 |
+
finally:
|
494 |
+
Logger.CURRENT.close()
|
495 |
+
Logger.CURRENT = prevlogger
|
496 |
+
|
house_diffusion/losses.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Helpers for various likelihood-based losses. These are ported from the original
|
3 |
+
Ho et al. diffusion models codebase:
|
4 |
+
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/utils.py
|
5 |
+
"""
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
import torch as th
|
10 |
+
|
11 |
+
|
12 |
+
def normal_kl(mean1, logvar1, mean2, logvar2):
|
13 |
+
"""
|
14 |
+
Compute the KL divergence between two gaussians.
|
15 |
+
|
16 |
+
Shapes are automatically broadcasted, so batches can be compared to
|
17 |
+
scalars, among other use cases.
|
18 |
+
"""
|
19 |
+
tensor = None
|
20 |
+
for obj in (mean1, logvar1, mean2, logvar2):
|
21 |
+
if isinstance(obj, th.Tensor):
|
22 |
+
tensor = obj
|
23 |
+
break
|
24 |
+
assert tensor is not None, "at least one argument must be a Tensor"
|
25 |
+
|
26 |
+
# Force variances to be Tensors. Broadcasting helps convert scalars to
|
27 |
+
# Tensors, but it does not work for th.exp().
|
28 |
+
logvar1, logvar2 = [
|
29 |
+
x if isinstance(x, th.Tensor) else th.tensor(x).to(tensor)
|
30 |
+
for x in (logvar1, logvar2)
|
31 |
+
]
|
32 |
+
|
33 |
+
return 0.5 * (
|
34 |
+
-1.0
|
35 |
+
+ logvar2
|
36 |
+
- logvar1
|
37 |
+
+ th.exp(logvar1 - logvar2)
|
38 |
+
+ ((mean1 - mean2) ** 2) * th.exp(-logvar2)
|
39 |
+
)
|
40 |
+
|
41 |
+
|
42 |
+
def approx_standard_normal_cdf(x):
|
43 |
+
"""
|
44 |
+
A fast approximation of the cumulative distribution function of the
|
45 |
+
standard normal.
|
46 |
+
"""
|
47 |
+
return 0.5 * (1.0 + th.tanh(np.sqrt(2.0 / np.pi) * (x + 0.044715 * th.pow(x, 3))))
|
48 |
+
|
49 |
+
|
50 |
+
def discretized_gaussian_log_likelihood(x, *, means, log_scales):
|
51 |
+
"""
|
52 |
+
Compute the log-likelihood of a Gaussian distribution discretizing to a
|
53 |
+
given image.
|
54 |
+
|
55 |
+
:param x: the target images. It is assumed that this was uint8 values,
|
56 |
+
rescaled to the range [-1, 1].
|
57 |
+
:param means: the Gaussian mean Tensor.
|
58 |
+
:param log_scales: the Gaussian log stddev Tensor.
|
59 |
+
:return: a tensor like x of log probabilities (in nats).
|
60 |
+
"""
|
61 |
+
assert x.shape == means.shape == log_scales.shape
|
62 |
+
centered_x = x - means
|
63 |
+
inv_stdv = th.exp(-log_scales)
|
64 |
+
plus_in = inv_stdv * (centered_x + 1.0 / 255.0)
|
65 |
+
cdf_plus = approx_standard_normal_cdf(plus_in)
|
66 |
+
min_in = inv_stdv * (centered_x - 1.0 / 255.0)
|
67 |
+
cdf_min = approx_standard_normal_cdf(min_in)
|
68 |
+
log_cdf_plus = th.log(cdf_plus.clamp(min=1e-12))
|
69 |
+
log_one_minus_cdf_min = th.log((1.0 - cdf_min).clamp(min=1e-12))
|
70 |
+
cdf_delta = cdf_plus - cdf_min
|
71 |
+
log_probs = th.where(
|
72 |
+
x < -0.999,
|
73 |
+
log_cdf_plus,
|
74 |
+
th.where(x > 0.999, log_one_minus_cdf_min, th.log(cdf_delta.clamp(min=1e-12))),
|
75 |
+
)
|
76 |
+
assert log_probs.shape == x.shape
|
77 |
+
return log_probs
|
house_diffusion/nn.py
ADDED
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Various utilities for neural networks.
|
3 |
+
"""
|
4 |
+
|
5 |
+
import math
|
6 |
+
|
7 |
+
import torch as th
|
8 |
+
import torch.nn as nn
|
9 |
+
|
10 |
+
|
11 |
+
# PyTorch 1.7 has SiLU, but we support PyTorch 1.5.
|
12 |
+
class SiLU(nn.Module):
|
13 |
+
def forward(self, x):
|
14 |
+
return x * th.sigmoid(x)
|
15 |
+
|
16 |
+
|
17 |
+
class GroupNorm32(nn.GroupNorm):
|
18 |
+
def forward(self, x):
|
19 |
+
return super().forward(x.float()).type(x.dtype)
|
20 |
+
|
21 |
+
|
22 |
+
def conv_nd(dims, *args, **kwargs):
|
23 |
+
"""
|
24 |
+
Create a 1D, 2D, or 3D convolution module.
|
25 |
+
"""
|
26 |
+
if dims == 1:
|
27 |
+
return nn.Conv1d(*args, **kwargs)
|
28 |
+
elif dims == 2:
|
29 |
+
return nn.Conv2d(*args, **kwargs)
|
30 |
+
elif dims == 3:
|
31 |
+
return nn.Conv3d(*args, **kwargs)
|
32 |
+
raise ValueError(f"unsupported dimensions: {dims}")
|
33 |
+
|
34 |
+
|
35 |
+
def linear(*args, **kwargs):
|
36 |
+
"""
|
37 |
+
Create a linear module.
|
38 |
+
"""
|
39 |
+
return nn.Linear(*args, **kwargs)
|
40 |
+
|
41 |
+
|
42 |
+
def avg_pool_nd(dims, *args, **kwargs):
|
43 |
+
"""
|
44 |
+
Create a 1D, 2D, or 3D average pooling module.
|
45 |
+
"""
|
46 |
+
if dims == 1:
|
47 |
+
return nn.AvgPool1d(*args, **kwargs)
|
48 |
+
elif dims == 2:
|
49 |
+
return nn.AvgPool2d(*args, **kwargs)
|
50 |
+
elif dims == 3:
|
51 |
+
return nn.AvgPool3d(*args, **kwargs)
|
52 |
+
raise ValueError(f"unsupported dimensions: {dims}")
|
53 |
+
|
54 |
+
|
55 |
+
def update_ema(target_params, source_params, rate=0.99):
|
56 |
+
"""
|
57 |
+
Update target parameters to be closer to those of source parameters using
|
58 |
+
an exponential moving average.
|
59 |
+
|
60 |
+
:param target_params: the target parameter sequence.
|
61 |
+
:param source_params: the source parameter sequence.
|
62 |
+
:param rate: the EMA rate (closer to 1 means slower).
|
63 |
+
"""
|
64 |
+
for targ, src in zip(target_params, source_params):
|
65 |
+
targ.detach().mul_(rate).add_(src, alpha=1 - rate)
|
66 |
+
|
67 |
+
|
68 |
+
def zero_module(module):
|
69 |
+
"""
|
70 |
+
Zero out the parameters of a module and return it.
|
71 |
+
"""
|
72 |
+
for p in module.parameters():
|
73 |
+
p.detach().zero_()
|
74 |
+
return module
|
75 |
+
|
76 |
+
|
77 |
+
def scale_module(module, scale):
|
78 |
+
"""
|
79 |
+
Scale the parameters of a module and return it.
|
80 |
+
"""
|
81 |
+
for p in module.parameters():
|
82 |
+
p.detach().mul_(scale)
|
83 |
+
return module
|
84 |
+
|
85 |
+
|
86 |
+
def mean_flat(tensor, padding_mask):
|
87 |
+
"""
|
88 |
+
Take the mean over all non-batch dimensions.
|
89 |
+
"""
|
90 |
+
tensor = tensor * padding_mask.unsqueeze(1)
|
91 |
+
tensor = tensor.mean(dim=list(range(1, len(tensor.shape))))/th.sum(padding_mask, dim=1)
|
92 |
+
return tensor
|
93 |
+
|
94 |
+
|
95 |
+
def normalization(channels):
|
96 |
+
"""
|
97 |
+
Make a standard normalization layer.
|
98 |
+
|
99 |
+
:param channels: number of input channels.
|
100 |
+
:return: an nn.Module for normalization.
|
101 |
+
"""
|
102 |
+
return GroupNorm32(32, channels)
|
103 |
+
|
104 |
+
|
105 |
+
def timestep_embedding(timesteps, dim, max_period=10000):
|
106 |
+
"""
|
107 |
+
Create sinusoidal timestep embeddings.
|
108 |
+
|
109 |
+
:param timesteps: a 1-D Tensor of N indices, one per batch element.
|
110 |
+
These may be fractional.
|
111 |
+
:param dim: the dimension of the output.
|
112 |
+
:param max_period: controls the minimum frequency of the embeddings.
|
113 |
+
:return: an [N x dim] Tensor of positional embeddings.
|
114 |
+
"""
|
115 |
+
half = dim // 2
|
116 |
+
freqs = th.exp(
|
117 |
+
-math.log(max_period) * th.arange(start=0, end=half, dtype=th.float32) / half
|
118 |
+
).to(device=timesteps.device)
|
119 |
+
args = timesteps[:, None].float() * freqs[None]
|
120 |
+
embedding = th.cat([th.cos(args), th.sin(args)], dim=-1)
|
121 |
+
if dim % 2:
|
122 |
+
embedding = th.cat([embedding, th.zeros_like(embedding[:, :1])], dim=-1)
|
123 |
+
return embedding
|
124 |
+
|
125 |
+
|
126 |
+
def checkpoint(func, inputs, params, flag):
|
127 |
+
"""
|
128 |
+
Evaluate a function without caching intermediate activations, allowing for
|
129 |
+
reduced memory at the expense of extra compute in the backward pass.
|
130 |
+
|
131 |
+
:param func: the function to evaluate.
|
132 |
+
:param inputs: the argument sequence to pass to `func`.
|
133 |
+
:param params: a sequence of parameters `func` depends on but does not
|
134 |
+
explicitly take as arguments.
|
135 |
+
:param flag: if False, disable gradient checkpointing.
|
136 |
+
"""
|
137 |
+
if flag:
|
138 |
+
args = tuple(inputs) + tuple(params)
|
139 |
+
return CheckpointFunction.apply(func, len(inputs), *args)
|
140 |
+
else:
|
141 |
+
return func(*inputs)
|
142 |
+
|
143 |
+
|
144 |
+
class CheckpointFunction(th.autograd.Function):
|
145 |
+
@staticmethod
|
146 |
+
def forward(ctx, run_function, length, *args):
|
147 |
+
ctx.run_function = run_function
|
148 |
+
ctx.input_tensors = list(args[:length])
|
149 |
+
ctx.input_params = list(args[length:])
|
150 |
+
with th.no_grad():
|
151 |
+
output_tensors = ctx.run_function(*ctx.input_tensors)
|
152 |
+
return output_tensors
|
153 |
+
|
154 |
+
@staticmethod
|
155 |
+
def backward(ctx, *output_grads):
|
156 |
+
ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
|
157 |
+
with th.enable_grad():
|
158 |
+
# Fixes a bug where the first op in run_function modifies the
|
159 |
+
# Tensor storage in place, which is not allowed for detach()'d
|
160 |
+
# Tensors.
|
161 |
+
shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
|
162 |
+
output_tensors = ctx.run_function(*shallow_copies)
|
163 |
+
input_grads = th.autograd.grad(
|
164 |
+
output_tensors,
|
165 |
+
ctx.input_tensors + ctx.input_params,
|
166 |
+
output_grads,
|
167 |
+
allow_unused=True,
|
168 |
+
)
|
169 |
+
del ctx.input_tensors
|
170 |
+
del ctx.input_params
|
171 |
+
del output_tensors
|
172 |
+
return (None, None) + input_grads
|
house_diffusion/resample.py
ADDED
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from abc import ABC, abstractmethod
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import torch as th
|
5 |
+
import torch.distributed as dist
|
6 |
+
|
7 |
+
|
8 |
+
def create_named_schedule_sampler(name, diffusion):
|
9 |
+
"""
|
10 |
+
Create a ScheduleSampler from a library of pre-defined samplers.
|
11 |
+
|
12 |
+
:param name: the name of the sampler.
|
13 |
+
:param diffusion: the diffusion object to sample for.
|
14 |
+
"""
|
15 |
+
if name == "uniform":
|
16 |
+
return UniformSampler(diffusion)
|
17 |
+
elif name == "loss-second-moment":
|
18 |
+
return LossSecondMomentResampler(diffusion)
|
19 |
+
else:
|
20 |
+
raise NotImplementedError(f"unknown schedule sampler: {name}")
|
21 |
+
|
22 |
+
|
23 |
+
class ScheduleSampler(ABC):
|
24 |
+
"""
|
25 |
+
A distribution over timesteps in the diffusion process, intended to reduce
|
26 |
+
variance of the objective.
|
27 |
+
|
28 |
+
By default, samplers perform unbiased importance sampling, in which the
|
29 |
+
objective's mean is unchanged.
|
30 |
+
However, subclasses may override sample() to change how the resampled
|
31 |
+
terms are reweighted, allowing for actual changes in the objective.
|
32 |
+
"""
|
33 |
+
|
34 |
+
@abstractmethod
|
35 |
+
def weights(self):
|
36 |
+
"""
|
37 |
+
Get a numpy array of weights, one per diffusion step.
|
38 |
+
|
39 |
+
The weights needn't be normalized, but must be positive.
|
40 |
+
"""
|
41 |
+
|
42 |
+
def sample(self, batch_size, device):
|
43 |
+
"""
|
44 |
+
Importance-sample timesteps for a batch.
|
45 |
+
|
46 |
+
:param batch_size: the number of timesteps.
|
47 |
+
:param device: the torch device to save to.
|
48 |
+
:return: a tuple (timesteps, weights):
|
49 |
+
- timesteps: a tensor of timestep indices.
|
50 |
+
- weights: a tensor of weights to scale the resulting losses.
|
51 |
+
"""
|
52 |
+
w = self.weights()
|
53 |
+
p = w / np.sum(w)
|
54 |
+
indices_np = np.random.choice(len(p), size=(batch_size,), p=p)
|
55 |
+
indices = th.from_numpy(indices_np).long().to(device)
|
56 |
+
weights_np = 1 / (len(p) * p[indices_np])
|
57 |
+
weights = th.from_numpy(weights_np).float().to(device)
|
58 |
+
return indices, weights
|
59 |
+
|
60 |
+
|
61 |
+
class UniformSampler(ScheduleSampler):
|
62 |
+
def __init__(self, diffusion):
|
63 |
+
self.diffusion = diffusion
|
64 |
+
self._weights = np.ones([diffusion.num_timesteps])
|
65 |
+
|
66 |
+
def weights(self):
|
67 |
+
return self._weights
|
68 |
+
|
69 |
+
|
70 |
+
class LossAwareSampler(ScheduleSampler):
|
71 |
+
def update_with_local_losses(self, local_ts, local_losses):
|
72 |
+
"""
|
73 |
+
Update the reweighting using losses from a model.
|
74 |
+
|
75 |
+
Call this method from each rank with a batch of timesteps and the
|
76 |
+
corresponding losses for each of those timesteps.
|
77 |
+
This method will perform synchronization to make sure all of the ranks
|
78 |
+
maintain the exact same reweighting.
|
79 |
+
|
80 |
+
:param local_ts: an integer Tensor of timesteps.
|
81 |
+
:param local_losses: a 1D Tensor of losses.
|
82 |
+
"""
|
83 |
+
batch_sizes = [
|
84 |
+
th.tensor([0], dtype=th.int32, device=local_ts.device)
|
85 |
+
for _ in range(dist.get_world_size())
|
86 |
+
]
|
87 |
+
dist.all_gather(
|
88 |
+
batch_sizes,
|
89 |
+
th.tensor([len(local_ts)], dtype=th.int32, device=local_ts.device),
|
90 |
+
)
|
91 |
+
|
92 |
+
# Pad all_gather batches to be the maximum batch size.
|
93 |
+
batch_sizes = [x.item() for x in batch_sizes]
|
94 |
+
max_bs = max(batch_sizes)
|
95 |
+
|
96 |
+
timestep_batches = [th.zeros(max_bs).to(local_ts) for bs in batch_sizes]
|
97 |
+
loss_batches = [th.zeros(max_bs).to(local_losses) for bs in batch_sizes]
|
98 |
+
dist.all_gather(timestep_batches, local_ts)
|
99 |
+
dist.all_gather(loss_batches, local_losses)
|
100 |
+
timesteps = [
|
101 |
+
x.item() for y, bs in zip(timestep_batches, batch_sizes) for x in y[:bs]
|
102 |
+
]
|
103 |
+
losses = [x.item() for y, bs in zip(loss_batches, batch_sizes) for x in y[:bs]]
|
104 |
+
self.update_with_all_losses(timesteps, losses)
|
105 |
+
|
106 |
+
@abstractmethod
|
107 |
+
def update_with_all_losses(self, ts, losses):
|
108 |
+
"""
|
109 |
+
Update the reweighting using losses from a model.
|
110 |
+
|
111 |
+
Sub-classes should override this method to update the reweighting
|
112 |
+
using losses from the model.
|
113 |
+
|
114 |
+
This method directly updates the reweighting without synchronizing
|
115 |
+
between workers. It is called by update_with_local_losses from all
|
116 |
+
ranks with identical arguments. Thus, it should have deterministic
|
117 |
+
behavior to maintain state across workers.
|
118 |
+
|
119 |
+
:param ts: a list of int timesteps.
|
120 |
+
:param losses: a list of float losses, one per timestep.
|
121 |
+
"""
|
122 |
+
|
123 |
+
|
124 |
+
class LossSecondMomentResampler(LossAwareSampler):
|
125 |
+
def __init__(self, diffusion, history_per_term=10, uniform_prob=0.001):
|
126 |
+
self.diffusion = diffusion
|
127 |
+
self.history_per_term = history_per_term
|
128 |
+
self.uniform_prob = uniform_prob
|
129 |
+
self._loss_history = np.zeros(
|
130 |
+
[diffusion.num_timesteps, history_per_term], dtype=np.float64
|
131 |
+
)
|
132 |
+
self._loss_counts = np.zeros([diffusion.num_timesteps], dtype=np.int)
|
133 |
+
|
134 |
+
def weights(self):
|
135 |
+
if not self._warmed_up():
|
136 |
+
return np.ones([self.diffusion.num_timesteps], dtype=np.float64)
|
137 |
+
weights = np.sqrt(np.mean(self._loss_history ** 2, axis=-1))
|
138 |
+
weights /= np.sum(weights)
|
139 |
+
weights *= 1 - self.uniform_prob
|
140 |
+
weights += self.uniform_prob / len(weights)
|
141 |
+
return weights
|
142 |
+
|
143 |
+
def update_with_all_losses(self, ts, losses):
|
144 |
+
for t, loss in zip(ts, losses):
|
145 |
+
if self._loss_counts[t] == self.history_per_term:
|
146 |
+
# Shift out the oldest loss term.
|
147 |
+
self._loss_history[t, :-1] = self._loss_history[t, 1:]
|
148 |
+
self._loss_history[t, -1] = loss
|
149 |
+
else:
|
150 |
+
self._loss_history[t, self._loss_counts[t]] = loss
|
151 |
+
self._loss_counts[t] += 1
|
152 |
+
|
153 |
+
def _warmed_up(self):
|
154 |
+
return (self._loss_counts == self.history_per_term).all()
|
house_diffusion/respace.py
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch as th
|
3 |
+
|
4 |
+
from .gaussian_diffusion import GaussianDiffusion
|
5 |
+
|
6 |
+
|
7 |
+
def space_timesteps(num_timesteps, section_counts):
|
8 |
+
"""
|
9 |
+
Create a list of timesteps to use from an original diffusion process,
|
10 |
+
given the number of timesteps we want to take from equally-sized portions
|
11 |
+
of the original process.
|
12 |
+
|
13 |
+
For example, if there's 300 timesteps and the section counts are [10,15,20]
|
14 |
+
then the first 100 timesteps are strided to be 10 timesteps, the second 100
|
15 |
+
are strided to be 15 timesteps, and the final 100 are strided to be 20.
|
16 |
+
|
17 |
+
If the stride is a string starting with "ddim", then the fixed striding
|
18 |
+
from the DDIM paper is used, and only one section is allowed.
|
19 |
+
|
20 |
+
:param num_timesteps: the number of diffusion steps in the original
|
21 |
+
process to divide up.
|
22 |
+
:param section_counts: either a list of numbers, or a string containing
|
23 |
+
comma-separated numbers, indicating the step count
|
24 |
+
per section. As a special case, use "ddimN" where N
|
25 |
+
is a number of steps to use the striding from the
|
26 |
+
DDIM paper.
|
27 |
+
:return: a set of diffusion steps from the original process to use.
|
28 |
+
"""
|
29 |
+
if isinstance(section_counts, str):
|
30 |
+
if section_counts.startswith("ddim"):
|
31 |
+
desired_count = int(section_counts[len("ddim") :])
|
32 |
+
for i in range(1, num_timesteps):
|
33 |
+
if len(range(0, num_timesteps, i)) == desired_count:
|
34 |
+
return set(range(0, num_timesteps, i))
|
35 |
+
raise ValueError(
|
36 |
+
f"cannot create exactly {num_timesteps} steps with an integer stride"
|
37 |
+
)
|
38 |
+
section_counts = [int(x) for x in section_counts.split(",")]
|
39 |
+
size_per = num_timesteps // len(section_counts)
|
40 |
+
extra = num_timesteps % len(section_counts)
|
41 |
+
start_idx = 0
|
42 |
+
all_steps = []
|
43 |
+
for i, section_count in enumerate(section_counts):
|
44 |
+
size = size_per + (1 if i < extra else 0)
|
45 |
+
if size < section_count:
|
46 |
+
raise ValueError(
|
47 |
+
f"cannot divide section of {size} steps into {section_count}"
|
48 |
+
)
|
49 |
+
if section_count <= 1:
|
50 |
+
frac_stride = 1
|
51 |
+
else:
|
52 |
+
frac_stride = (size - 1) / (section_count - 1)
|
53 |
+
cur_idx = 0.0
|
54 |
+
taken_steps = []
|
55 |
+
for _ in range(section_count):
|
56 |
+
taken_steps.append(start_idx + round(cur_idx))
|
57 |
+
cur_idx += frac_stride
|
58 |
+
all_steps += taken_steps
|
59 |
+
start_idx += size
|
60 |
+
return set(all_steps)
|
61 |
+
|
62 |
+
|
63 |
+
class SpacedDiffusion(GaussianDiffusion):
|
64 |
+
"""
|
65 |
+
A diffusion process which can skip steps in a base diffusion process.
|
66 |
+
|
67 |
+
:param use_timesteps: a collection (sequence or set) of timesteps from the
|
68 |
+
original diffusion process to retain.
|
69 |
+
:param kwargs: the kwargs to create the base diffusion process.
|
70 |
+
"""
|
71 |
+
|
72 |
+
def __init__(self, use_timesteps, **kwargs):
|
73 |
+
self.use_timesteps = set(use_timesteps)
|
74 |
+
self.timestep_map = []
|
75 |
+
self.original_num_steps = len(kwargs["betas"])
|
76 |
+
|
77 |
+
base_diffusion = GaussianDiffusion(**kwargs) # pylint: disable=missing-kwoa
|
78 |
+
last_alpha_cumprod = 1.0
|
79 |
+
new_betas = []
|
80 |
+
for i, alpha_cumprod in enumerate(base_diffusion.alphas_cumprod):
|
81 |
+
if i in self.use_timesteps:
|
82 |
+
new_betas.append(1 - alpha_cumprod / last_alpha_cumprod)
|
83 |
+
last_alpha_cumprod = alpha_cumprod
|
84 |
+
self.timestep_map.append(i)
|
85 |
+
kwargs["betas"] = np.array(new_betas)
|
86 |
+
super().__init__(**kwargs)
|
87 |
+
|
88 |
+
def p_mean_variance(
|
89 |
+
self, model, *args, **kwargs
|
90 |
+
): # pylint: disable=signature-differs
|
91 |
+
return super().p_mean_variance(self._wrap_model(model), *args, **kwargs)
|
92 |
+
|
93 |
+
def training_losses(
|
94 |
+
self, model, *args, **kwargs
|
95 |
+
): # pylint: disable=signature-differs
|
96 |
+
return super().training_losses(self._wrap_model(model), *args, **kwargs)
|
97 |
+
|
98 |
+
def condition_mean(self, cond_fn, *args, **kwargs):
|
99 |
+
return super().condition_mean(self._wrap_model(cond_fn), *args, **kwargs)
|
100 |
+
|
101 |
+
def condition_score(self, cond_fn, *args, **kwargs):
|
102 |
+
return super().condition_score(self._wrap_model(cond_fn), *args, **kwargs)
|
103 |
+
|
104 |
+
def _wrap_model(self, model):
|
105 |
+
if isinstance(model, _WrappedModel):
|
106 |
+
return model
|
107 |
+
return _WrappedModel(
|
108 |
+
model, self.timestep_map, self.rescale_timesteps, self.original_num_steps
|
109 |
+
)
|
110 |
+
|
111 |
+
def _scale_timesteps(self, t):
|
112 |
+
# Scaling is done by the wrapped model.
|
113 |
+
return t
|
114 |
+
|
115 |
+
|
116 |
+
class _WrappedModel:
|
117 |
+
def __init__(self, model, timestep_map, rescale_timesteps, original_num_steps):
|
118 |
+
self.model = model
|
119 |
+
self.timestep_map = timestep_map
|
120 |
+
self.rescale_timesteps = rescale_timesteps
|
121 |
+
self.original_num_steps = original_num_steps
|
122 |
+
|
123 |
+
def __call__(self, x, ts, **kwargs):
|
124 |
+
map_tensor = th.tensor(self.timestep_map, device=ts.device, dtype=ts.dtype)
|
125 |
+
new_ts = map_tensor[ts]
|
126 |
+
if self.rescale_timesteps:
|
127 |
+
new_ts = new_ts.float() * (1000.0 / self.original_num_steps)
|
128 |
+
return self.model(x, new_ts, **kwargs)
|
house_diffusion/rplanhg_datasets.py
ADDED
@@ -0,0 +1,620 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import random
|
3 |
+
import torch as th
|
4 |
+
|
5 |
+
from PIL import Image, ImageDraw
|
6 |
+
import blobfile as bf
|
7 |
+
from mpi4py import MPI
|
8 |
+
import numpy as np
|
9 |
+
from torch.utils.data import DataLoader, Dataset
|
10 |
+
from glob import glob
|
11 |
+
import json
|
12 |
+
import os
|
13 |
+
import cv2 as cv
|
14 |
+
from tqdm import tqdm
|
15 |
+
from shapely import geometry as gm
|
16 |
+
from shapely.ops import unary_union
|
17 |
+
from collections import defaultdict
|
18 |
+
import copy
|
19 |
+
|
20 |
+
|
21 |
+
def load_rplanhg_data(
|
22 |
+
batch_size,
|
23 |
+
analog_bit,
|
24 |
+
target_set,
|
25 |
+
set_name='train',
|
26 |
+
):
|
27 |
+
"""
|
28 |
+
For a dataset, create a generator over (shapes, kwargs) pairs.
|
29 |
+
"""
|
30 |
+
# set_name = 'train'
|
31 |
+
set_name = 'eval'
|
32 |
+
print(f"loading {set_name} of target set {target_set}")
|
33 |
+
deterministic = False if set_name == 'train' else True
|
34 |
+
dataset = RPlanhgDataset(set_name, analog_bit, target_set)
|
35 |
+
if deterministic:
|
36 |
+
loader = DataLoader(
|
37 |
+
dataset, batch_size=batch_size, shuffle=False, num_workers=2, drop_last=False
|
38 |
+
)
|
39 |
+
else:
|
40 |
+
loader = DataLoader(
|
41 |
+
dataset, batch_size=batch_size, shuffle=True, num_workers=2, drop_last=False
|
42 |
+
)
|
43 |
+
while True:
|
44 |
+
yield from loader
|
45 |
+
|
46 |
+
|
47 |
+
def make_non_manhattan(poly, polygon, house_poly):
|
48 |
+
dist = abs(poly[2] - poly[0])
|
49 |
+
direction = np.argmin(dist)
|
50 |
+
center = poly.mean(0)
|
51 |
+
min = poly.min(0)
|
52 |
+
max = poly.max(0)
|
53 |
+
|
54 |
+
tmp = np.random.randint(3, 7)
|
55 |
+
new_min_y = center[1] - (max[1] - min[1]) / tmp
|
56 |
+
new_max_y = center[1] + (max[1] - min[1]) / tmp
|
57 |
+
if center[0] < 128:
|
58 |
+
new_min_x = min[0] - (max[0] - min[0]) / np.random.randint(2, 5)
|
59 |
+
new_max_x = center[0]
|
60 |
+
poly1 = [[min[0], min[1]], [new_min_x, new_min_y], [new_min_x, new_max_y], [min[0], max[1]], [max[0], max[1]],
|
61 |
+
[max[0], min[1]]]
|
62 |
+
else:
|
63 |
+
new_min_x = center[0]
|
64 |
+
new_max_x = max[0] + (max[0] - min[0]) / np.random.randint(2, 5)
|
65 |
+
poly1 = [[min[0], min[1]], [min[0], max[1]], [max[0], max[1]], [new_max_x, new_max_y], [new_max_x, new_min_y],
|
66 |
+
[max[0], min[1]]]
|
67 |
+
|
68 |
+
new_min_x = center[0] - (max[0] - min[0]) / tmp
|
69 |
+
new_max_x = center[0] + (max[0] - min[0]) / tmp
|
70 |
+
if center[1] < 128:
|
71 |
+
new_min_y = min[1] - (max[1] - min[1]) / np.random.randint(2, 5)
|
72 |
+
new_max_y = center[1]
|
73 |
+
poly2 = [[min[0], min[1]], [min[0], max[1]], [max[0], max[1]], [max[0], min[1]], [new_max_x, new_min_y],
|
74 |
+
[new_min_x, new_min_y]]
|
75 |
+
else:
|
76 |
+
new_min_y = center[1]
|
77 |
+
new_max_y = max[1] + (max[1] - min[1]) / np.random.randint(2, 5)
|
78 |
+
poly2 = [[min[0], min[1]], [min[0], max[1]], [new_min_x, new_max_y], [new_max_x, new_max_y], [max[0], max[1]],
|
79 |
+
[max[0], min[1]]]
|
80 |
+
p1 = gm.Polygon(poly1)
|
81 |
+
iou1 = house_poly.intersection(p1).area / p1.area
|
82 |
+
p2 = gm.Polygon(poly2)
|
83 |
+
iou2 = house_poly.intersection(p2).area / p2.area
|
84 |
+
if iou1 > 0.9 and iou2 > 0.9:
|
85 |
+
return poly
|
86 |
+
if iou1 < iou2:
|
87 |
+
return poly1
|
88 |
+
else:
|
89 |
+
return poly2
|
90 |
+
|
91 |
+
|
92 |
+
get_bin = lambda x, z: [int(y) for y in format(x, 'b').zfill(z)]
|
93 |
+
get_one_hot = lambda x, z: np.eye(z)[min(x, z - 1)]
|
94 |
+
|
95 |
+
|
96 |
+
class RPlanhgDataset(Dataset):
|
97 |
+
def __init__(self, set_name, analog_bit, target_set, non_manhattan=False):
|
98 |
+
super().__init__()
|
99 |
+
base_dir = '../datasets/rplan'
|
100 |
+
self.non_manhattan = non_manhattan
|
101 |
+
self.set_name = set_name
|
102 |
+
self.analog_bit = analog_bit
|
103 |
+
self.target_set = target_set
|
104 |
+
self.subgraphs = []
|
105 |
+
self.org_graphs = []
|
106 |
+
self.org_houses = []
|
107 |
+
max_num_points = 100
|
108 |
+
if self.set_name == 'eval':
|
109 |
+
cnumber_dist = np.load(f'processed_rplan/rplan_train_{target_set}_cndist.npz', allow_pickle=True)[
|
110 |
+
'cnumber_dist'].item()
|
111 |
+
if os.path.exists(f'processed_rplan/rplan_{set_name}_{target_set}.npz'):
|
112 |
+
data = np.load(f'processed_rplan/rplan_{set_name}_{target_set}.npz', allow_pickle=True)
|
113 |
+
self.graphs = data['graphs']
|
114 |
+
self.houses = data['houses']
|
115 |
+
self.door_masks = data['door_masks']
|
116 |
+
self.self_masks = data['self_masks']
|
117 |
+
self.gen_masks = data['gen_masks']
|
118 |
+
self.num_coords = 2
|
119 |
+
self.max_num_points = max_num_points
|
120 |
+
cnumber_dist = np.load(f'processed_rplan/rplan_train_{target_set}_cndist.npz', allow_pickle=True)[
|
121 |
+
'cnumber_dist'].item()
|
122 |
+
if self.set_name == 'eval':
|
123 |
+
data = np.load(f'processed_rplan/rplan_{set_name}_{target_set}_syn.npz', allow_pickle=True)
|
124 |
+
self.syn_graphs = data['graphs']
|
125 |
+
self.syn_houses = data['houses']
|
126 |
+
self.syn_door_masks = data['door_masks']
|
127 |
+
self.syn_self_masks = data['self_masks']
|
128 |
+
self.syn_gen_masks = data['gen_masks']
|
129 |
+
else:
|
130 |
+
with open(f'{base_dir}/list.txt') as f:
|
131 |
+
lines = f.readlines()
|
132 |
+
cnt = 0
|
133 |
+
|
134 |
+
# TODO
|
135 |
+
failed_plans = []
|
136 |
+
|
137 |
+
for line in tqdm(lines):
|
138 |
+
# cnt=cnt+1
|
139 |
+
# file_name = f'{base_dir}/{line[:-1]}'
|
140 |
+
# rms_type, fp_eds,rms_bbs,eds_to_rms=reader(file_name)
|
141 |
+
# fp_size = len([x for x in rms_type if x != 15 and x != 17])
|
142 |
+
# if self.set_name=='train' and fp_size == target_set:
|
143 |
+
# continue
|
144 |
+
# if self.set_name=='eval' and fp_size != target_set:
|
145 |
+
# continue
|
146 |
+
# a = [rms_type, rms_bbs, fp_eds, eds_to_rms]
|
147 |
+
# self.subgraphs.append(a)
|
148 |
+
|
149 |
+
# for graph in tqdm(self.subgraphs):
|
150 |
+
try:
|
151 |
+
cnt = cnt + 1
|
152 |
+
file_name = f'{base_dir}/{line[:-1]}'
|
153 |
+
rms_type, fp_eds, rms_bbs, eds_to_rms = reader(file_name)
|
154 |
+
fp_size = len([x for x in rms_type if x != 15 and x != 17])
|
155 |
+
if self.set_name == 'train' and fp_size == target_set:
|
156 |
+
continue
|
157 |
+
if self.set_name == 'eval' and fp_size != target_set:
|
158 |
+
continue
|
159 |
+
graph = [rms_type, rms_bbs, fp_eds, eds_to_rms]
|
160 |
+
rms_type = graph[0]
|
161 |
+
rms_bbs = graph[1]
|
162 |
+
fp_eds = graph[2]
|
163 |
+
eds_to_rms = graph[3]
|
164 |
+
rms_bbs = np.array(rms_bbs)
|
165 |
+
fp_eds = np.array(fp_eds)
|
166 |
+
|
167 |
+
# extract boundary box and centralize
|
168 |
+
tl = np.min(rms_bbs[:, :2], 0)
|
169 |
+
br = np.max(rms_bbs[:, 2:], 0)
|
170 |
+
shift = (tl + br) / 2.0 - 0.5
|
171 |
+
rms_bbs[:, :2] -= shift
|
172 |
+
rms_bbs[:, 2:] -= shift
|
173 |
+
fp_eds[:, :2] -= shift
|
174 |
+
fp_eds[:, 2:] -= shift
|
175 |
+
tl -= shift
|
176 |
+
br -= shift
|
177 |
+
|
178 |
+
# build input graph
|
179 |
+
graph_nodes, graph_edges, rooms_mks = self.build_graph(rms_type, fp_eds, eds_to_rms)
|
180 |
+
|
181 |
+
house = []
|
182 |
+
for room_mask, room_type in zip(rooms_mks, graph_nodes):
|
183 |
+
room_mask = room_mask.astype(np.uint8)
|
184 |
+
room_mask = cv.resize(room_mask, (256, 256), interpolation=cv.INTER_AREA)
|
185 |
+
contours, _ = cv.findContours(room_mask, cv.RETR_TREE, cv.CHAIN_APPROX_SIMPLE)
|
186 |
+
contours = contours[0]
|
187 |
+
house.append([contours[:, 0, :], room_type])
|
188 |
+
self.org_graphs.append(graph_edges)
|
189 |
+
self.org_houses.append(house)
|
190 |
+
|
191 |
+
except IndexError:
|
192 |
+
# print(line)
|
193 |
+
failed_plans.append(line)
|
194 |
+
print("failed: ", failed_plans)
|
195 |
+
print("len: ", len(failed_plans))
|
196 |
+
|
197 |
+
houses = []
|
198 |
+
door_masks = []
|
199 |
+
self_masks = []
|
200 |
+
gen_masks = []
|
201 |
+
graphs = []
|
202 |
+
if self.set_name == 'train':
|
203 |
+
cnumber_dist = defaultdict(list)
|
204 |
+
|
205 |
+
if self.non_manhattan:
|
206 |
+
for h, graph in tqdm(zip(self.org_houses, self.org_graphs), desc='processing dataset'):
|
207 |
+
# Generating non-manhattan Balconies
|
208 |
+
tmp = []
|
209 |
+
for i, room in enumerate(h):
|
210 |
+
if room[1] > 10:
|
211 |
+
continue
|
212 |
+
if len(room[0]) != 4:
|
213 |
+
continue
|
214 |
+
if np.random.randint(2):
|
215 |
+
continue
|
216 |
+
poly = gm.Polygon(room[0])
|
217 |
+
house_polygon = unary_union([gm.Polygon(room[0]) for room in h])
|
218 |
+
room[0] = make_non_manhattan(room[0], poly, house_polygon)
|
219 |
+
|
220 |
+
for h, graph in tqdm(zip(self.org_houses, self.org_graphs), desc='processing dataset'):
|
221 |
+
house = []
|
222 |
+
corner_bounds = []
|
223 |
+
num_points = 0
|
224 |
+
for i, room in enumerate(h):
|
225 |
+
if room[1] > 10:
|
226 |
+
room[1] = {15: 11, 17: 12, 16: 13}[room[1]]
|
227 |
+
room[0] = np.reshape(room[0], [len(room[0]),
|
228 |
+
2]) / 256. - 0.5 # [[x0,y0],[x1,y1],...,[x15,y15]] and map to 0-1 - > -0.5, 0.5
|
229 |
+
room[0] = room[0] * 2 # map to [-1, 1]
|
230 |
+
if self.set_name == 'train':
|
231 |
+
cnumber_dist[room[1]].append(len(room[0]))
|
232 |
+
# Adding conditions
|
233 |
+
num_room_corners = len(room[0])
|
234 |
+
rtype = np.repeat(np.array([get_one_hot(room[1], 25)]), num_room_corners, 0)
|
235 |
+
room_index = np.repeat(np.array([get_one_hot(len(house) + 1, 32)]), num_room_corners, 0)
|
236 |
+
corner_index = np.array([get_one_hot(x, 32) for x in range(num_room_corners)])
|
237 |
+
# Src_key_padding_mask
|
238 |
+
padding_mask = np.repeat(1, num_room_corners)
|
239 |
+
padding_mask = np.expand_dims(padding_mask, 1)
|
240 |
+
# Generating corner bounds for attention masks
|
241 |
+
connections = np.array([[i, (i + 1) % num_room_corners] for i in range(num_room_corners)])
|
242 |
+
connections += num_points
|
243 |
+
corner_bounds.append([num_points, num_points + num_room_corners])
|
244 |
+
num_points += num_room_corners
|
245 |
+
room = np.concatenate((room[0], rtype, corner_index, room_index, padding_mask, connections), 1)
|
246 |
+
house.append(room)
|
247 |
+
|
248 |
+
house_layouts = np.concatenate(house, 0)
|
249 |
+
if len(house_layouts) > max_num_points:
|
250 |
+
continue
|
251 |
+
padding = np.zeros((max_num_points - len(house_layouts), 94))
|
252 |
+
gen_mask = np.ones((max_num_points, max_num_points))
|
253 |
+
gen_mask[:len(house_layouts), :len(house_layouts)] = 0
|
254 |
+
house_layouts = np.concatenate((house_layouts, padding), 0)
|
255 |
+
|
256 |
+
door_mask = np.ones((max_num_points, max_num_points))
|
257 |
+
self_mask = np.ones((max_num_points, max_num_points))
|
258 |
+
for i in range(len(corner_bounds)):
|
259 |
+
for j in range(len(corner_bounds)):
|
260 |
+
if i == j:
|
261 |
+
self_mask[corner_bounds[i][0]:corner_bounds[i][1],
|
262 |
+
corner_bounds[j][0]:corner_bounds[j][1]] = 0
|
263 |
+
elif any(np.equal([i, 1, j], graph).all(1)) or any(np.equal([j, 1, i], graph).all(1)):
|
264 |
+
door_mask[corner_bounds[i][0]:corner_bounds[i][1],
|
265 |
+
corner_bounds[j][0]:corner_bounds[j][1]] = 0
|
266 |
+
houses.append(house_layouts)
|
267 |
+
door_masks.append(door_mask)
|
268 |
+
self_masks.append(self_mask)
|
269 |
+
gen_masks.append(gen_mask)
|
270 |
+
graphs.append(graph)
|
271 |
+
self.max_num_points = max_num_points
|
272 |
+
self.houses = houses
|
273 |
+
self.door_masks = door_masks
|
274 |
+
self.self_masks = self_masks
|
275 |
+
self.gen_masks = gen_masks
|
276 |
+
self.num_coords = 2
|
277 |
+
self.graphs = graphs
|
278 |
+
|
279 |
+
# --------------
|
280 |
+
# graph_dict = {f'graph_{i}': graph for i, graph in enumerate(self.graphs)}
|
281 |
+
for i, graph in enumerate(self.graphs):
|
282 |
+
print(f"Graph {i}: shape = {np.shape(graph)}, type = {type(graph)}")
|
283 |
+
|
284 |
+
# Save each graph individually within a dictionary
|
285 |
+
# graph_dict = {f'graph_{i}': graph for i, graph in enumerate(self.graphs)}
|
286 |
+
|
287 |
+
np.savez_compressed(f'processed_rplan/rplan_{set_name}_{target_set}', graphs=self.graphs,
|
288 |
+
houses=self.houses,
|
289 |
+
# np.savez_compressed(f'processed_rplan/rplan_{set_name}_{target_set}', **graph_dict, houses=self.houses,
|
290 |
+
door_masks=self.door_masks, self_masks=self.self_masks, gen_masks=self.gen_masks)
|
291 |
+
if self.set_name == 'train':
|
292 |
+
np.savez_compressed(f'processed_rplan/rplan_{set_name}_{target_set}_cndist', cnumber_dist=cnumber_dist)
|
293 |
+
|
294 |
+
if set_name == 'eval':
|
295 |
+
houses = []
|
296 |
+
graphs = []
|
297 |
+
door_masks = []
|
298 |
+
self_masks = []
|
299 |
+
gen_masks = []
|
300 |
+
len_house_layouts = 0
|
301 |
+
for h, graph in tqdm(zip(self.org_houses, self.org_graphs), desc='processing dataset'):
|
302 |
+
house = []
|
303 |
+
corner_bounds = []
|
304 |
+
num_points = 0
|
305 |
+
# num_room_corners_total = [cnumber_dist[room[1]][random.randint(0, len(cnumber_dist[room[1]])-1)] for room in h]
|
306 |
+
# while np.sum(num_room_corners_total)>=max_num_points:
|
307 |
+
# num_room_corners_total = [cnumber_dist[room[1]][random.randint(0, len(cnumber_dist[room[1]])-1)] for room in h]
|
308 |
+
num_room_corners_total = []
|
309 |
+
for room in h:
|
310 |
+
room_type = room[1]
|
311 |
+
default_value = 4
|
312 |
+
if room_type in cnumber_dist and cnumber_dist[room_type]:
|
313 |
+
num_room_corners_total.append(
|
314 |
+
cnumber_dist[room_type][random.randint(0, len(cnumber_dist[room_type]) - 1)]
|
315 |
+
)
|
316 |
+
else:
|
317 |
+
# Handle the case where cnumber_dist[room_type] is missing or empty
|
318 |
+
print(f"Warning: No data found for room type {room_type}. Assigning default value.")
|
319 |
+
default_value = 4 # Assign a reasonable default value or handle accordingly
|
320 |
+
num_room_corners_total.append(default_value)
|
321 |
+
|
322 |
+
while np.sum(num_room_corners_total) >= max_num_points:
|
323 |
+
num_room_corners_total = []
|
324 |
+
for room in h:
|
325 |
+
room_type = room[1]
|
326 |
+
if room_type in cnumber_dist and cnumber_dist[room_type]:
|
327 |
+
num_room_corners_total.append(
|
328 |
+
cnumber_dist[room_type][random.randint(0, len(cnumber_dist[room_type]) - 1)]
|
329 |
+
)
|
330 |
+
else:
|
331 |
+
num_room_corners_total.append(default_value)
|
332 |
+
|
333 |
+
for i, room in enumerate(h):
|
334 |
+
# Adding conditions
|
335 |
+
num_room_corners = num_room_corners_total[i]
|
336 |
+
rtype = np.repeat(np.array([get_one_hot(room[1], 25)]), num_room_corners, 0)
|
337 |
+
room_index = np.repeat(np.array([get_one_hot(len(house) + 1, 32)]), num_room_corners, 0)
|
338 |
+
corner_index = np.array([get_one_hot(x, 32) for x in range(num_room_corners)])
|
339 |
+
# Src_key_padding_mask
|
340 |
+
padding_mask = np.repeat(1, num_room_corners)
|
341 |
+
padding_mask = np.expand_dims(padding_mask, 1)
|
342 |
+
# Generating corner bounds for attention masks
|
343 |
+
connections = np.array([[i, (i + 1) % num_room_corners] for i in range(num_room_corners)])
|
344 |
+
connections += num_points
|
345 |
+
corner_bounds.append([num_points, num_points + num_room_corners])
|
346 |
+
num_points += num_room_corners
|
347 |
+
room = np.concatenate((np.zeros([num_room_corners, 2]), rtype, corner_index, room_index,
|
348 |
+
padding_mask, connections), 1)
|
349 |
+
house.append(room)
|
350 |
+
|
351 |
+
house_layouts = np.concatenate(house, 0)
|
352 |
+
if np.sum([len(room[0]) for room in h]) > max_num_points:
|
353 |
+
continue
|
354 |
+
padding = np.zeros((max_num_points - len(house_layouts), 94))
|
355 |
+
gen_mask = np.ones((max_num_points, max_num_points))
|
356 |
+
gen_mask[:len(house_layouts), :len(house_layouts)] = 0
|
357 |
+
house_layouts = np.concatenate((house_layouts, padding), 0)
|
358 |
+
|
359 |
+
door_mask = np.ones((max_num_points, max_num_points))
|
360 |
+
self_mask = np.ones((max_num_points, max_num_points))
|
361 |
+
for i, room in enumerate(h):
|
362 |
+
if room[1] == 1:
|
363 |
+
living_room_index = i
|
364 |
+
break
|
365 |
+
for i in range(len(corner_bounds)):
|
366 |
+
is_connected = False
|
367 |
+
for j in range(len(corner_bounds)):
|
368 |
+
if i == j:
|
369 |
+
self_mask[corner_bounds[i][0]:corner_bounds[i][1],
|
370 |
+
corner_bounds[j][0]:corner_bounds[j][1]] = 0
|
371 |
+
elif any(np.equal([i, 1, j], graph).all(1)) or any(np.equal([j, 1, i], graph).all(1)):
|
372 |
+
door_mask[corner_bounds[i][0]:corner_bounds[i][1],
|
373 |
+
corner_bounds[j][0]:corner_bounds[j][1]] = 0
|
374 |
+
is_connected = True
|
375 |
+
if not is_connected:
|
376 |
+
door_mask[corner_bounds[i][0]:corner_bounds[i][1],
|
377 |
+
corner_bounds[living_room_index][0]:corner_bounds[living_room_index][1]] = 0
|
378 |
+
|
379 |
+
houses.append(house_layouts)
|
380 |
+
door_masks.append(door_mask)
|
381 |
+
self_masks.append(self_mask)
|
382 |
+
gen_masks.append(gen_mask)
|
383 |
+
graphs.append(graph)
|
384 |
+
self.syn_houses = houses
|
385 |
+
self.syn_door_masks = door_masks
|
386 |
+
self.syn_self_masks = self_masks
|
387 |
+
self.syn_gen_masks = gen_masks
|
388 |
+
self.syn_graphs = graphs
|
389 |
+
np.savez_compressed(f'processed_rplan/rplan_{set_name}_{target_set}_syn', graphs=self.syn_graphs,
|
390 |
+
houses=self.syn_houses,
|
391 |
+
door_masks=self.syn_door_masks, self_masks=self.syn_self_masks,
|
392 |
+
gen_masks=self.syn_gen_masks)
|
393 |
+
|
394 |
+
|
395 |
+
def __len__(self):
|
396 |
+
return len(self.houses)
|
397 |
+
|
398 |
+
def __getitem__(self, idx):
|
399 |
+
# idx = int(idx//20)
|
400 |
+
arr = self.houses[idx][:, :self.num_coords]
|
401 |
+
graph = np.concatenate((self.graphs[idx], np.zeros([200 - len(self.graphs[idx]), 3])), 0)
|
402 |
+
|
403 |
+
cond = {
|
404 |
+
'door_mask': self.door_masks[idx],
|
405 |
+
'self_mask': self.self_masks[idx],
|
406 |
+
'gen_mask': self.gen_masks[idx],
|
407 |
+
'room_types': self.houses[idx][:, self.num_coords:self.num_coords + 25],
|
408 |
+
'corner_indices': self.houses[idx][:, self.num_coords + 25:self.num_coords + 57],
|
409 |
+
'room_indices': self.houses[idx][:, self.num_coords + 57:self.num_coords + 89],
|
410 |
+
'src_key_padding_mask': 1 - self.houses[idx][:, self.num_coords + 89],
|
411 |
+
'connections': self.houses[idx][:, self.num_coords + 90:self.num_coords + 92],
|
412 |
+
'graph': graph,
|
413 |
+
}
|
414 |
+
if self.set_name == 'eval':
|
415 |
+
syn_graph = np.concatenate((self.syn_graphs[idx], np.zeros([200 - len(self.syn_graphs[idx]), 3])), 0)
|
416 |
+
assert (graph == syn_graph).all(), idx
|
417 |
+
cond.update({
|
418 |
+
'syn_door_mask': self.syn_door_masks[idx],
|
419 |
+
'syn_self_mask': self.syn_self_masks[idx],
|
420 |
+
'syn_gen_mask': self.syn_gen_masks[idx],
|
421 |
+
'syn_room_types': self.syn_houses[idx][:, self.num_coords:self.num_coords + 25],
|
422 |
+
'syn_corner_indices': self.syn_houses[idx][:, self.num_coords + 25:self.num_coords + 57],
|
423 |
+
'syn_room_indices': self.syn_houses[idx][:, self.num_coords + 57:self.num_coords + 89],
|
424 |
+
'syn_src_key_padding_mask': 1 - self.syn_houses[idx][:, self.num_coords + 89],
|
425 |
+
'syn_connections': self.syn_houses[idx][:, self.num_coords + 90:self.num_coords + 92],
|
426 |
+
'syn_graph': syn_graph,
|
427 |
+
})
|
428 |
+
if self.set_name == 'train':
|
429 |
+
#### Random Rotate
|
430 |
+
rotation = random.randint(0, 3)
|
431 |
+
if rotation == 1:
|
432 |
+
arr[:, [0, 1]] = arr[:, [1, 0]]
|
433 |
+
arr[:, 0] = -arr[:, 0]
|
434 |
+
elif rotation == 2:
|
435 |
+
arr[:, [0, 1]] = -arr[:, [1, 0]]
|
436 |
+
elif rotation == 3:
|
437 |
+
arr[:, [0, 1]] = arr[:, [1, 0]]
|
438 |
+
arr[:, 1] = -arr[:, 1]
|
439 |
+
|
440 |
+
## To generate any rotation uncomment this
|
441 |
+
|
442 |
+
# if self.non_manhattan:
|
443 |
+
# theta = random.random()*np.pi/2
|
444 |
+
# rot_mat = np.array([[np.cos(theta), -np.sin(theta), 0],
|
445 |
+
# [np.sin(theta), np.cos(theta), 0]])
|
446 |
+
# arr = np.matmul(arr,rot_mat)[:,:2]
|
447 |
+
|
448 |
+
# Random Scale
|
449 |
+
# arr = arr * np.random.normal(1., .5)
|
450 |
+
|
451 |
+
# Random Shift
|
452 |
+
# arr[:, 0] = arr[:, 0] + np.random.normal(0., .1)
|
453 |
+
# arr[:, 1] = arr[:, 1] + np.random.normal(0., .1)
|
454 |
+
|
455 |
+
if not self.analog_bit:
|
456 |
+
arr = np.transpose(arr, [1, 0])
|
457 |
+
return arr.astype(float), cond
|
458 |
+
else:
|
459 |
+
ONE_HOT_RES = 256
|
460 |
+
arr_onehot = np.zeros((ONE_HOT_RES * 2, arr.shape[1])) - 1
|
461 |
+
xs = ((arr[:, 0] + 1) * (ONE_HOT_RES / 2)).astype(int)
|
462 |
+
ys = ((arr[:, 1] + 1) * (ONE_HOT_RES / 2)).astype(int)
|
463 |
+
xs = np.array([get_bin(x, 8) for x in xs])
|
464 |
+
ys = np.array([get_bin(x, 8) for x in ys])
|
465 |
+
arr_onehot = np.concatenate([xs, ys], 1)
|
466 |
+
arr_onehot = np.transpose(arr_onehot, [1, 0])
|
467 |
+
arr_onehot[arr_onehot == 0] = -1
|
468 |
+
return arr_onehot.astype(float), cond
|
469 |
+
|
470 |
+
def make_sequence(self, edges):
|
471 |
+
polys = []
|
472 |
+
v_curr = tuple(edges[0][:2])
|
473 |
+
e_ind_curr = 0
|
474 |
+
e_visited = [0]
|
475 |
+
seq_tracker = [v_curr]
|
476 |
+
find_next = False
|
477 |
+
while len(e_visited) < len(edges):
|
478 |
+
if find_next == False:
|
479 |
+
if v_curr == tuple(edges[e_ind_curr][2:]):
|
480 |
+
v_curr = tuple(edges[e_ind_curr][:2])
|
481 |
+
else:
|
482 |
+
v_curr = tuple(edges[e_ind_curr][2:])
|
483 |
+
find_next = not find_next
|
484 |
+
else:
|
485 |
+
# look for next edge
|
486 |
+
for k, e in enumerate(edges):
|
487 |
+
if k not in e_visited:
|
488 |
+
if (v_curr == tuple(e[:2])):
|
489 |
+
v_curr = tuple(e[2:])
|
490 |
+
e_ind_curr = k
|
491 |
+
e_visited.append(k)
|
492 |
+
break
|
493 |
+
elif (v_curr == tuple(e[2:])):
|
494 |
+
v_curr = tuple(e[:2])
|
495 |
+
e_ind_curr = k
|
496 |
+
e_visited.append(k)
|
497 |
+
break
|
498 |
+
|
499 |
+
# extract next sequence
|
500 |
+
if v_curr == seq_tracker[-1]:
|
501 |
+
polys.append(seq_tracker)
|
502 |
+
for k, e in enumerate(edges):
|
503 |
+
if k not in e_visited:
|
504 |
+
v_curr = tuple(edges[0][:2])
|
505 |
+
seq_tracker = [v_curr]
|
506 |
+
find_next = False
|
507 |
+
e_ind_curr = k
|
508 |
+
e_visited.append(k)
|
509 |
+
break
|
510 |
+
else:
|
511 |
+
seq_tracker.append(v_curr)
|
512 |
+
polys.append(seq_tracker)
|
513 |
+
|
514 |
+
return polys
|
515 |
+
|
516 |
+
def build_graph(self, rms_type, fp_eds, eds_to_rms, out_size=64):
|
517 |
+
# create edges
|
518 |
+
triples = []
|
519 |
+
nodes = rms_type
|
520 |
+
# encode connections
|
521 |
+
for k in range(len(nodes)):
|
522 |
+
for l in range(len(nodes)):
|
523 |
+
if l > k:
|
524 |
+
is_adjacent = any([True for e_map in eds_to_rms if (l in e_map) and (k in e_map)])
|
525 |
+
if is_adjacent:
|
526 |
+
if 'train' in self.set_name:
|
527 |
+
triples.append([k, 1, l])
|
528 |
+
else:
|
529 |
+
triples.append([k, 1, l])
|
530 |
+
else:
|
531 |
+
if 'train' in self.set_name:
|
532 |
+
triples.append([k, -1, l])
|
533 |
+
else:
|
534 |
+
triples.append([k, -1, l])
|
535 |
+
# get rooms masks
|
536 |
+
eds_to_rms_tmp = []
|
537 |
+
for l in range(len(eds_to_rms)):
|
538 |
+
eds_to_rms_tmp.append([eds_to_rms[l][0]])
|
539 |
+
rms_masks = []
|
540 |
+
im_size = 256
|
541 |
+
fp_mk = np.zeros((out_size, out_size))
|
542 |
+
for k in range(len(nodes)):
|
543 |
+
# add rooms and doors
|
544 |
+
eds = []
|
545 |
+
for l, e_map in enumerate(eds_to_rms_tmp):
|
546 |
+
if (k in e_map):
|
547 |
+
eds.append(l)
|
548 |
+
# draw rooms
|
549 |
+
rm_im = Image.new('L', (im_size, im_size))
|
550 |
+
dr = ImageDraw.Draw(rm_im)
|
551 |
+
for eds_poly in [eds]:
|
552 |
+
poly = self.make_sequence(np.array([fp_eds[l][:4] for l in eds_poly]))[0]
|
553 |
+
poly = [(im_size * x, im_size * y) for x, y in poly]
|
554 |
+
if len(poly) >= 2:
|
555 |
+
dr.polygon(poly, fill='white')
|
556 |
+
else:
|
557 |
+
print("Empty room")
|
558 |
+
exit(0)
|
559 |
+
rm_im = rm_im.resize((out_size, out_size))
|
560 |
+
rm_arr = np.array(rm_im)
|
561 |
+
inds = np.where(rm_arr > 0)
|
562 |
+
rm_arr[inds] = 1.0
|
563 |
+
rms_masks.append(rm_arr)
|
564 |
+
if rms_type[k] != 15 and rms_type[k] != 17:
|
565 |
+
fp_mk[inds] = k + 1
|
566 |
+
# trick to remove overlap
|
567 |
+
for k in range(len(nodes)):
|
568 |
+
if rms_type[k] != 15 and rms_type[k] != 17:
|
569 |
+
rm_arr = np.zeros((out_size, out_size))
|
570 |
+
inds = np.where(fp_mk == k + 1)
|
571 |
+
rm_arr[inds] = 1.0
|
572 |
+
rms_masks[k] = rm_arr
|
573 |
+
# convert to array
|
574 |
+
nodes = np.array(nodes)
|
575 |
+
triples = np.array(triples)
|
576 |
+
rms_masks = np.array(rms_masks)
|
577 |
+
return nodes, triples, rms_masks
|
578 |
+
|
579 |
+
|
580 |
+
def is_adjacent(box_a, box_b, threshold=0.03):
|
581 |
+
x0, y0, x1, y1 = box_a
|
582 |
+
x2, y2, x3, y3 = box_b
|
583 |
+
h1, h2 = x1 - x0, x3 - x2
|
584 |
+
w1, w2 = y1 - y0, y3 - y2
|
585 |
+
xc1, xc2 = (x0 + x1) / 2.0, (x2 + x3) / 2.0
|
586 |
+
yc1, yc2 = (y0 + y1) / 2.0, (y2 + y3) / 2.0
|
587 |
+
delta_x = np.abs(xc2 - xc1) - (h1 + h2) / 2.0
|
588 |
+
delta_y = np.abs(yc2 - yc1) - (w1 + w2) / 2.0
|
589 |
+
delta = max(delta_x, delta_y)
|
590 |
+
return delta < threshold
|
591 |
+
|
592 |
+
|
593 |
+
def reader(filename):
|
594 |
+
with open(filename) as f:
|
595 |
+
info = json.load(f)
|
596 |
+
rms_bbs = np.asarray(info['boxes'])
|
597 |
+
fp_eds = info['edges']
|
598 |
+
rms_type = info['room_type']
|
599 |
+
eds_to_rms = info['ed_rm']
|
600 |
+
s_r = 0
|
601 |
+
for rmk in range(len(rms_type)):
|
602 |
+
if (rms_type[rmk] != 17):
|
603 |
+
s_r = s_r + 1
|
604 |
+
rms_bbs = np.array(rms_bbs) / 256.0
|
605 |
+
fp_eds = np.array(fp_eds) / 256.0
|
606 |
+
fp_eds = fp_eds[:, :4]
|
607 |
+
tl = np.min(rms_bbs[:, :2], 0)
|
608 |
+
br = np.max(rms_bbs[:, 2:], 0)
|
609 |
+
shift = (tl + br) / 2.0 - 0.5
|
610 |
+
rms_bbs[:, :2] -= shift
|
611 |
+
rms_bbs[:, 2:] -= shift
|
612 |
+
fp_eds[:, :2] -= shift
|
613 |
+
fp_eds[:, 2:] -= shift
|
614 |
+
tl -= shift
|
615 |
+
br -= shift
|
616 |
+
return rms_type, fp_eds, rms_bbs, eds_to_rms
|
617 |
+
|
618 |
+
|
619 |
+
if __name__ == '__main__':
|
620 |
+
dataset = RPlanhgDataset('eval', False, 8)
|
house_diffusion/script_util.py
ADDED
@@ -0,0 +1,182 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import inspect
|
3 |
+
|
4 |
+
from . import gaussian_diffusion as gd
|
5 |
+
from .respace import SpacedDiffusion, space_timesteps
|
6 |
+
from .transformer import TransformerModel
|
7 |
+
|
8 |
+
def diffusion_defaults():
|
9 |
+
"""
|
10 |
+
Defaults for image and classifier training.
|
11 |
+
"""
|
12 |
+
return dict(
|
13 |
+
analog_bit=False,
|
14 |
+
learn_sigma=False,
|
15 |
+
# diffusion_steps=25,
|
16 |
+
diffusion_steps=1000,
|
17 |
+
noise_schedule="cosine",
|
18 |
+
timestep_respacing="ddim100",
|
19 |
+
use_kl=False,
|
20 |
+
predict_xstart=False,
|
21 |
+
rescale_timesteps=False,
|
22 |
+
rescale_learned_sigmas=False,
|
23 |
+
# target_set=-1,
|
24 |
+
|
25 |
+
# target_set=4,
|
26 |
+
# target_set=5,
|
27 |
+
# target_set=6,
|
28 |
+
# target_set=7,
|
29 |
+
target_set=8,
|
30 |
+
|
31 |
+
set_name='',
|
32 |
+
)
|
33 |
+
|
34 |
+
def update_arg_parser(args):
|
35 |
+
args.num_channels = 512
|
36 |
+
num_coords = 16 if args.analog_bit else 2
|
37 |
+
if args.dataset=='rplan':
|
38 |
+
args.input_channels = num_coords + (2*8 if not args.analog_bit else 0) # . , . , . , . , '
|
39 |
+
args.condition_channels = 89
|
40 |
+
args.out_channels = num_coords * 1
|
41 |
+
args.use_unet = False
|
42 |
+
|
43 |
+
elif args.dataset=='st3d':
|
44 |
+
args.input_channels = num_coords + (2*8 if not args.analog_bit else 0) # . , . , . , . , '
|
45 |
+
args.condition_channels = 89
|
46 |
+
args.out_channels = num_coords * 1
|
47 |
+
args.use_unet = False
|
48 |
+
|
49 |
+
elif args.dataset=='zind':
|
50 |
+
args.input_channels = num_coords + 2 * 8
|
51 |
+
args.condition_channels = 89
|
52 |
+
args.out_channels = num_coords * 1
|
53 |
+
args.use_unet = False
|
54 |
+
|
55 |
+
elif args.dataset=='layout':
|
56 |
+
args.use_unet = True
|
57 |
+
pass #TODO NEED TO COMPLETE
|
58 |
+
|
59 |
+
elif args.dataset=='outdoor':
|
60 |
+
args.use_unet = True
|
61 |
+
pass #TODO NEED TO COMPLETE
|
62 |
+
else:
|
63 |
+
assert False, "DATASET NOT FOUND"
|
64 |
+
|
65 |
+
def model_and_diffusion_defaults():
|
66 |
+
"""
|
67 |
+
Defaults for image training.
|
68 |
+
"""
|
69 |
+
res = dict(
|
70 |
+
dataset='rplan',
|
71 |
+
# dataset='',
|
72 |
+
use_checkpoint=False,
|
73 |
+
input_channels=0,
|
74 |
+
condition_channels=0,
|
75 |
+
out_channels=0,
|
76 |
+
use_unet=False,
|
77 |
+
num_channels=128
|
78 |
+
)
|
79 |
+
res.update(diffusion_defaults())
|
80 |
+
return res
|
81 |
+
|
82 |
+
def create_model_and_diffusion(
|
83 |
+
input_channels,
|
84 |
+
condition_channels,
|
85 |
+
num_channels,
|
86 |
+
out_channels,
|
87 |
+
dataset,
|
88 |
+
use_checkpoint,
|
89 |
+
use_unet,
|
90 |
+
learn_sigma,
|
91 |
+
diffusion_steps,
|
92 |
+
noise_schedule,
|
93 |
+
timestep_respacing,
|
94 |
+
use_kl,
|
95 |
+
predict_xstart,
|
96 |
+
rescale_timesteps,
|
97 |
+
rescale_learned_sigmas,
|
98 |
+
analog_bit,
|
99 |
+
target_set,
|
100 |
+
set_name,
|
101 |
+
):
|
102 |
+
model = TransformerModel(input_channels, condition_channels, num_channels, out_channels, dataset, use_checkpoint, use_unet, analog_bit)
|
103 |
+
|
104 |
+
diffusion = create_gaussian_diffusion(
|
105 |
+
steps=diffusion_steps,
|
106 |
+
learn_sigma=learn_sigma,
|
107 |
+
noise_schedule=noise_schedule,
|
108 |
+
use_kl=use_kl,
|
109 |
+
predict_xstart=predict_xstart,
|
110 |
+
rescale_timesteps=rescale_timesteps,
|
111 |
+
rescale_learned_sigmas=rescale_learned_sigmas,
|
112 |
+
timestep_respacing=timestep_respacing,
|
113 |
+
)
|
114 |
+
return model, diffusion
|
115 |
+
|
116 |
+
def create_gaussian_diffusion(
|
117 |
+
*,
|
118 |
+
steps=1000,
|
119 |
+
learn_sigma=False,
|
120 |
+
sigma_small=False,
|
121 |
+
noise_schedule="linear",
|
122 |
+
use_kl=False,
|
123 |
+
predict_xstart=False,
|
124 |
+
rescale_timesteps=False,
|
125 |
+
rescale_learned_sigmas=False,
|
126 |
+
timestep_respacing="",
|
127 |
+
):
|
128 |
+
betas = gd.get_named_beta_schedule(noise_schedule, steps)
|
129 |
+
if use_kl:
|
130 |
+
loss_type = gd.LossType.RESCALED_KL
|
131 |
+
elif rescale_learned_sigmas:
|
132 |
+
loss_type = gd.LossType.RESCALED_MSE
|
133 |
+
else:
|
134 |
+
loss_type = gd.LossType.MSE
|
135 |
+
if not timestep_respacing:
|
136 |
+
timestep_respacing = [steps]
|
137 |
+
return SpacedDiffusion(
|
138 |
+
use_timesteps=space_timesteps(steps, timestep_respacing),
|
139 |
+
betas=betas,
|
140 |
+
model_mean_type=(
|
141 |
+
gd.ModelMeanType.EPSILON if not predict_xstart else gd.ModelMeanType.START_X
|
142 |
+
),
|
143 |
+
model_var_type=(
|
144 |
+
(
|
145 |
+
gd.ModelVarType.FIXED_LARGE
|
146 |
+
if not sigma_small
|
147 |
+
else gd.ModelVarType.FIXED_SMALL
|
148 |
+
)
|
149 |
+
if not learn_sigma
|
150 |
+
else gd.ModelVarType.LEARNED_RANGE
|
151 |
+
),
|
152 |
+
loss_type=loss_type,
|
153 |
+
rescale_timesteps=rescale_timesteps,
|
154 |
+
)
|
155 |
+
|
156 |
+
|
157 |
+
def add_dict_to_argparser(parser, default_dict):
|
158 |
+
for k, v in default_dict.items():
|
159 |
+
v_type = type(v)
|
160 |
+
if v is None:
|
161 |
+
v_type = str
|
162 |
+
elif isinstance(v, bool):
|
163 |
+
v_type = str2bool
|
164 |
+
parser.add_argument(f"--{k}", default=v, type=v_type)
|
165 |
+
|
166 |
+
|
167 |
+
def args_to_dict(args, keys):
|
168 |
+
return {k: getattr(args, k) for k in keys}
|
169 |
+
|
170 |
+
|
171 |
+
def str2bool(v):
|
172 |
+
"""
|
173 |
+
https://stackoverflow.com/questions/15008758/parsing-boolean-values-with-argparse
|
174 |
+
"""
|
175 |
+
if isinstance(v, bool):
|
176 |
+
return v
|
177 |
+
if v.lower() in ("yes", "true", "t", "y", "1"):
|
178 |
+
return True
|
179 |
+
elif v.lower() in ("no", "false", "f", "n", "0"):
|
180 |
+
return False
|
181 |
+
else:
|
182 |
+
raise argparse.ArgumentTypeError("boolean value expected")
|
house_diffusion/train_util.py
ADDED
@@ -0,0 +1,416 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import functools
|
3 |
+
import os
|
4 |
+
|
5 |
+
import blobfile as bf
|
6 |
+
import torch as th
|
7 |
+
import torch.distributed as dist
|
8 |
+
from torch.nn.parallel.distributed import DistributedDataParallel as DDP
|
9 |
+
from torch.optim import AdamW
|
10 |
+
|
11 |
+
from . import dist_util, logger
|
12 |
+
from .fp16_util import MixedPrecisionTrainer
|
13 |
+
from .nn import update_ema
|
14 |
+
from .resample import LossAwareSampler, UniformSampler
|
15 |
+
|
16 |
+
# For ImageNet experiments, this was a good default value.
|
17 |
+
# We found that the lg_loss_scale quickly climbed to
|
18 |
+
# 20-21 within the first ~1K steps of training.
|
19 |
+
INITIAL_LOG_LOSS_SCALE = 20.0
|
20 |
+
|
21 |
+
|
22 |
+
class TrainLoop:
|
23 |
+
def __init__(
|
24 |
+
self,
|
25 |
+
*,
|
26 |
+
model,
|
27 |
+
diffusion,
|
28 |
+
data,
|
29 |
+
batch_size,
|
30 |
+
microbatch,
|
31 |
+
lr,
|
32 |
+
ema_rate,
|
33 |
+
log_interval,
|
34 |
+
save_interval,
|
35 |
+
resume_checkpoint,
|
36 |
+
use_fp16=False,
|
37 |
+
fp16_scale_growth=1e-3,
|
38 |
+
schedule_sampler=None,
|
39 |
+
weight_decay=0.0,
|
40 |
+
lr_anneal_steps=0,
|
41 |
+
analog_bit=None,
|
42 |
+
):
|
43 |
+
self.analog_bit = analog_bit
|
44 |
+
self.model = model
|
45 |
+
self.diffusion = diffusion
|
46 |
+
self.data = data
|
47 |
+
self.batch_size = batch_size
|
48 |
+
self.microbatch = microbatch if microbatch > 0 else batch_size
|
49 |
+
self.lr = lr
|
50 |
+
self.ema_rate = (
|
51 |
+
[ema_rate]
|
52 |
+
if isinstance(ema_rate, float)
|
53 |
+
else [float(x) for x in ema_rate.split(",")]
|
54 |
+
)
|
55 |
+
self.log_interval = log_interval
|
56 |
+
self.save_interval = save_interval
|
57 |
+
self.resume_checkpoint = resume_checkpoint
|
58 |
+
self.use_fp16 = use_fp16
|
59 |
+
self.fp16_scale_growth = fp16_scale_growth
|
60 |
+
self.schedule_sampler = schedule_sampler or UniformSampler(diffusion)
|
61 |
+
self.weight_decay = weight_decay
|
62 |
+
self.lr_anneal_steps = lr_anneal_steps
|
63 |
+
|
64 |
+
self.step = 0
|
65 |
+
self.resume_step = 0
|
66 |
+
self.global_batch = self.batch_size * dist.get_world_size()
|
67 |
+
|
68 |
+
self.sync_cuda = th.cuda.is_available()
|
69 |
+
|
70 |
+
# TODO ------------------------------------------------------------------------
|
71 |
+
pretrained_path = "../ckpts/exp/model250000.pt"
|
72 |
+
pretrained_path = False
|
73 |
+
|
74 |
+
if pretrained_path:
|
75 |
+
self.load_pretrained(pretrained_path)
|
76 |
+
self.count_parameters_by_layer()
|
77 |
+
|
78 |
+
from .transformer_models import TransformerModels
|
79 |
+
|
80 |
+
device = th.device('cuda' if th.cuda.is_available() else 'cpu')
|
81 |
+
# self.model.to(device)
|
82 |
+
# print(th.get_default_device())
|
83 |
+
# th.set_default_device('cuda')
|
84 |
+
# print(th.get_default_device())
|
85 |
+
|
86 |
+
transformer_model = TransformerModels(self.model, device)
|
87 |
+
self.model_name = "Def"
|
88 |
+
|
89 |
+
# self.model = transformer_model.replace_InstanceNorm1d_LayerNorm()
|
90 |
+
# self.model_name = "Norm_LayerNorm"
|
91 |
+
# self.model = transformer_model.set_affine_true_for_instance_norm()
|
92 |
+
# self.model_name = "Norm_affine"
|
93 |
+
#
|
94 |
+
# self.model = transformer_model.replace_activation_function("GELU")
|
95 |
+
# self.model_name = "Activation_GELU"
|
96 |
+
# self.model = transformer_model.replace_activation_function("LeakyReLU")
|
97 |
+
# self.model_name = "Activation_LeakyRelu"
|
98 |
+
# self.model = transformer_model.replace_activation_function("ELU")
|
99 |
+
# self.model_name = "Activation_ELU"
|
100 |
+
# self.model = transformer_model.replace_activation_function("Mish")
|
101 |
+
# self.model_name = "Activation_Mish"
|
102 |
+
#
|
103 |
+
# self.model = transformer_model.add_encoder_layers(num_new_layers=2)
|
104 |
+
# self.model_name = "EncoderLayers_2"
|
105 |
+
# self.model = transformer_model.add_encoder_layers(num_new_layers=4)
|
106 |
+
# self.model_name = "EncoderLayers_4"
|
107 |
+
#
|
108 |
+
# self.model = transformer_model.dropout_value_change(val=0.01)
|
109 |
+
# self.model_name = "Dropout_01"
|
110 |
+
# self.model = transformer_model.dropout_value_change(val=0.001)
|
111 |
+
# self.model_name = "Dropout_001"
|
112 |
+
# self.model = transformer_model.dropout_value_change(val=0.9)
|
113 |
+
# self.model_name = "Dropout_9"
|
114 |
+
#
|
115 |
+
# self.model = transformer_model.change_linear_output_layers()
|
116 |
+
# self.model_name = "OutputLayer"
|
117 |
+
#
|
118 |
+
# self.model = transformer_model.add_cross_attention()
|
119 |
+
# self.model_name = "CrossAttention"
|
120 |
+
#
|
121 |
+
# self.model_name = "lr_001"
|
122 |
+
# self.model_name = "lr_00001"
|
123 |
+
#
|
124 |
+
# self.model_name = "wd_01"
|
125 |
+
|
126 |
+
self.model_name = ""
|
127 |
+
|
128 |
+
print(self.model)
|
129 |
+
self.count_parameters_by_layer()
|
130 |
+
|
131 |
+
# TODO ------------------------------------------------------------------------
|
132 |
+
|
133 |
+
self.mp_trainer = MixedPrecisionTrainer(
|
134 |
+
model=self.model,
|
135 |
+
use_fp16=self.use_fp16,
|
136 |
+
fp16_scale_growth=fp16_scale_growth,
|
137 |
+
)
|
138 |
+
|
139 |
+
self.opt = AdamW(
|
140 |
+
self.mp_trainer.master_params, lr=self.lr, weight_decay=self.weight_decay
|
141 |
+
)
|
142 |
+
|
143 |
+
if self.resume_step:
|
144 |
+
self._load_optimizer_state()
|
145 |
+
# Model was resumed, either due to a restart or a checkpoint
|
146 |
+
# being specified at the command line.
|
147 |
+
self.ema_params = [
|
148 |
+
self._load_ema_parameters(rate) for rate in self.ema_rate
|
149 |
+
]
|
150 |
+
else:
|
151 |
+
self.ema_params = [
|
152 |
+
copy.deepcopy(self.mp_trainer.master_params)
|
153 |
+
for _ in range(len(self.ema_rate))
|
154 |
+
]
|
155 |
+
|
156 |
+
if th.cuda.is_available():
|
157 |
+
self.use_ddp = True
|
158 |
+
self.ddp_model = DDP(
|
159 |
+
self.model,
|
160 |
+
device_ids=[dist_util.dev()],
|
161 |
+
output_device=dist_util.dev(),
|
162 |
+
broadcast_buffers=False,
|
163 |
+
bucket_cap_mb=128,
|
164 |
+
find_unused_parameters=False,
|
165 |
+
)
|
166 |
+
else:
|
167 |
+
if dist.get_world_size() > 1:
|
168 |
+
logger.warn(
|
169 |
+
"Distributed training requires CUDA. "
|
170 |
+
"Gradients will not be synchronized properly!"
|
171 |
+
)
|
172 |
+
self.use_ddp = False
|
173 |
+
self.ddp_model = self.model
|
174 |
+
|
175 |
+
# TODO----------------------------------------------------------------------------------
|
176 |
+
def count_parameters(self):
|
177 |
+
model = self.model
|
178 |
+
trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
|
179 |
+
untrainable_params = sum(p.numel() for p in model.parameters() if not p.requires_grad)
|
180 |
+
|
181 |
+
print(f"Trainable parameters: {trainable_params}")
|
182 |
+
print(f"Untrainable parameters: {untrainable_params}")
|
183 |
+
return trainable_params, untrainable_params
|
184 |
+
|
185 |
+
def count_parameters_by_layer(self):
|
186 |
+
print(f"{'Layer':<55} {'Trainable Params':<20} {'Untrainable Params':<20}")
|
187 |
+
print("=" * 95)
|
188 |
+
|
189 |
+
for name, param in self.model.named_parameters():
|
190 |
+
if param.requires_grad:
|
191 |
+
trainable_params = param.numel()
|
192 |
+
untrainable_params = 0
|
193 |
+
else:
|
194 |
+
trainable_params = 0
|
195 |
+
untrainable_params = param.numel()
|
196 |
+
|
197 |
+
print(f"{name:<55} {trainable_params:<20} {untrainable_params:<20}")
|
198 |
+
|
199 |
+
print("=" * 95)
|
200 |
+
total_trainable = sum(p.numel() for p in self.model.parameters() if p.requires_grad)
|
201 |
+
total_untrainable = sum(p.numel() for p in self.model.parameters() if not p.requires_grad)
|
202 |
+
|
203 |
+
print(f"{'Total':<55} {total_trainable:<20} {total_untrainable:<20}")
|
204 |
+
|
205 |
+
def load_pretrained(self, pretrained_path):
|
206 |
+
state_dict = th.load(pretrained_path, map_location=dist_util.dev())
|
207 |
+
self.model.load_state_dict(state_dict)
|
208 |
+
print(self.model)
|
209 |
+
logger.log(f"Loaded pretrained model from {pretrained_path}")
|
210 |
+
|
211 |
+
# --------------------------------------------------------------------------------------
|
212 |
+
|
213 |
+
def _load_and_sync_parameters(self):
|
214 |
+
resume_checkpoint = find_resume_checkpoint() or self.resume_checkpoint
|
215 |
+
|
216 |
+
if resume_checkpoint:
|
217 |
+
self.resume_step = parse_resume_step_from_filename(resume_checkpoint)
|
218 |
+
# if dist.get_rank() == 0:
|
219 |
+
logger.log(f"loading model from checkpoint: {resume_checkpoint}...")
|
220 |
+
self.model.load_state_dict(
|
221 |
+
dist_util.load_state_dict(
|
222 |
+
resume_checkpoint, map_location=dist_util.dev()
|
223 |
+
)
|
224 |
+
)
|
225 |
+
|
226 |
+
dist_util.sync_params(self.model.parameters())
|
227 |
+
|
228 |
+
def _load_ema_parameters(self, rate):
|
229 |
+
ema_params = copy.deepcopy(self.mp_trainer.master_params)
|
230 |
+
|
231 |
+
main_checkpoint = find_resume_checkpoint() or self.resume_checkpoint
|
232 |
+
ema_checkpoint = find_ema_checkpoint(main_checkpoint, self.resume_step, rate)
|
233 |
+
if ema_checkpoint:
|
234 |
+
if dist.get_rank() == 0:
|
235 |
+
logger.log(f"loading EMA from checkpoint: {ema_checkpoint}...")
|
236 |
+
state_dict = dist_util.load_state_dict(
|
237 |
+
ema_checkpoint, map_location=dist_util.dev()
|
238 |
+
)
|
239 |
+
ema_params = self.mp_trainer.state_dict_to_master_params(state_dict)
|
240 |
+
|
241 |
+
dist_util.sync_params(ema_params)
|
242 |
+
return ema_params
|
243 |
+
|
244 |
+
def _load_optimizer_state(self):
|
245 |
+
main_checkpoint = find_resume_checkpoint() or self.resume_checkpoint
|
246 |
+
opt_checkpoint = bf.join(
|
247 |
+
bf.dirname(main_checkpoint), f"opt{self.resume_step:06}.pt"
|
248 |
+
)
|
249 |
+
if bf.exists(opt_checkpoint):
|
250 |
+
logger.log(f"loading optimizer state from checkpoint: {opt_checkpoint}")
|
251 |
+
state_dict = dist_util.load_state_dict(
|
252 |
+
opt_checkpoint, map_location=dist_util.dev()
|
253 |
+
)
|
254 |
+
self.opt.load_state_dict(state_dict)
|
255 |
+
|
256 |
+
def run_loop(self):
|
257 |
+
while (
|
258 |
+
not self.lr_anneal_steps
|
259 |
+
or self.step + self.resume_step < self.lr_anneal_steps
|
260 |
+
):
|
261 |
+
batch, cond = next(self.data)
|
262 |
+
self.run_step(batch, cond)
|
263 |
+
# TODO: change 100000 for new lr
|
264 |
+
if self.step % 100000 == 0:
|
265 |
+
lr = self.lr * (0.1 ** (self.step // 100000))
|
266 |
+
logger.log(f"Step {self.step}: Updating learning rate to {lr}")
|
267 |
+
for param_group in self.opt.param_groups:
|
268 |
+
param_group["lr"] = lr
|
269 |
+
if self.step % self.log_interval == 0:
|
270 |
+
logger.dumpkvs()
|
271 |
+
if self.step % self.save_interval == 0 and self.step > 0:
|
272 |
+
self.save()
|
273 |
+
# Run for a finite amount of time in integration tests.
|
274 |
+
if os.environ.get("DIFFUSION_TRAINING_TEST", "") and self.step > 0:
|
275 |
+
return
|
276 |
+
self.step += 1
|
277 |
+
# Save the last checkpoint if it wasn't already saved.
|
278 |
+
if (self.step - 1) % self.save_interval != 0:
|
279 |
+
self.save()
|
280 |
+
|
281 |
+
def run_step(self, batch, cond):
|
282 |
+
self.forward_backward(batch, cond)
|
283 |
+
took_step = self.mp_trainer.optimize(self.opt)
|
284 |
+
if took_step:
|
285 |
+
self._update_ema()
|
286 |
+
self._anneal_lr()
|
287 |
+
self.log_step()
|
288 |
+
|
289 |
+
def forward_backward(self, batch, cond):
|
290 |
+
self.mp_trainer.zero_grad()
|
291 |
+
for i in range(0, batch.shape[0], self.microbatch):
|
292 |
+
micro = batch[i: i + self.microbatch].to(dist_util.dev())
|
293 |
+
micro_cond = {
|
294 |
+
k: v[i: i + self.microbatch].to(dist_util.dev())
|
295 |
+
for k, v in cond.items()
|
296 |
+
}
|
297 |
+
model_kwargs = micro_cond
|
298 |
+
|
299 |
+
last_batch = (i + self.microbatch) >= batch.shape[0]
|
300 |
+
t, weights = self.schedule_sampler.sample(micro.shape[0], dist_util.dev())
|
301 |
+
|
302 |
+
compute_losses = functools.partial(
|
303 |
+
self.diffusion.training_losses,
|
304 |
+
self.ddp_model,
|
305 |
+
micro,
|
306 |
+
t,
|
307 |
+
model_kwargs=model_kwargs,
|
308 |
+
analog_bit=self.analog_bit,
|
309 |
+
)
|
310 |
+
|
311 |
+
if last_batch or not self.use_ddp:
|
312 |
+
losses = compute_losses()
|
313 |
+
else:
|
314 |
+
with self.ddp_model.no_sync():
|
315 |
+
losses = compute_losses()
|
316 |
+
|
317 |
+
if isinstance(self.schedule_sampler, LossAwareSampler):
|
318 |
+
self.schedule_sampler.update_with_local_losses(
|
319 |
+
t, losses["loss"].detach()
|
320 |
+
)
|
321 |
+
|
322 |
+
loss = (losses["loss"] * weights).mean()
|
323 |
+
log_loss_dict(
|
324 |
+
self.diffusion, t, {k: v * weights for k, v in losses.items()}
|
325 |
+
)
|
326 |
+
self.mp_trainer.backward(loss)
|
327 |
+
|
328 |
+
def _update_ema(self):
|
329 |
+
for rate, params in zip(self.ema_rate, self.ema_params):
|
330 |
+
update_ema(params, self.mp_trainer.master_params, rate=rate)
|
331 |
+
|
332 |
+
def _anneal_lr(self):
|
333 |
+
if not self.lr_anneal_steps:
|
334 |
+
return
|
335 |
+
frac_done = (self.step + self.resume_step) / self.lr_anneal_steps
|
336 |
+
lr = self.lr * (1 - frac_done)
|
337 |
+
for param_group in self.opt.param_groups:
|
338 |
+
param_group["lr"] = lr
|
339 |
+
|
340 |
+
def log_step(self):
|
341 |
+
logger.logkv("step", self.step + self.resume_step)
|
342 |
+
logger.logkv("samples", (self.step + self.resume_step + 1) * self.global_batch)
|
343 |
+
|
344 |
+
def save(self):
|
345 |
+
def save_checkpoint(rate, params):
|
346 |
+
state_dict = self.mp_trainer.master_params_to_state_dict(params)
|
347 |
+
if dist.get_rank() == 0:
|
348 |
+
logger.log(f"saving model {rate}...")
|
349 |
+
if not rate:
|
350 |
+
filename = f"model{(self.step + self.resume_step):06d}.pt"
|
351 |
+
else:
|
352 |
+
filename = f"ema_{rate}_{(self.step + self.resume_step):06d}.pt"
|
353 |
+
|
354 |
+
filename = self.model_name + "_" + filename
|
355 |
+
|
356 |
+
with bf.BlobFile(bf.join(get_blob_logdir(), filename), "wb") as f:
|
357 |
+
th.save(state_dict, f)
|
358 |
+
|
359 |
+
save_checkpoint(0, self.mp_trainer.master_params)
|
360 |
+
for rate, params in zip(self.ema_rate, self.ema_params):
|
361 |
+
save_checkpoint(rate, params)
|
362 |
+
|
363 |
+
if dist.get_rank() == 0:
|
364 |
+
with bf.BlobFile(
|
365 |
+
bf.join(get_blob_logdir(), f"opt{(self.step + self.resume_step):06d}.pt"),
|
366 |
+
"wb",
|
367 |
+
) as f:
|
368 |
+
th.save(self.opt.state_dict(), f)
|
369 |
+
|
370 |
+
dist.barrier()
|
371 |
+
|
372 |
+
|
373 |
+
def parse_resume_step_from_filename(filename):
|
374 |
+
"""
|
375 |
+
Parse filenames of the form path/to/modelNNNNNN.pt, where NNNNNN is the
|
376 |
+
checkpoint's number of steps.
|
377 |
+
"""
|
378 |
+
split = filename.split("model")
|
379 |
+
if len(split) < 2:
|
380 |
+
return 0
|
381 |
+
split1 = split[-1].split(".")[0]
|
382 |
+
try:
|
383 |
+
return int(split1)
|
384 |
+
except ValueError:
|
385 |
+
return 0
|
386 |
+
|
387 |
+
|
388 |
+
def get_blob_logdir():
|
389 |
+
# You can change this to be a separate path to save checkpoints to
|
390 |
+
# a blobstore or some external drive.
|
391 |
+
return logger.get_dir()
|
392 |
+
|
393 |
+
|
394 |
+
def find_resume_checkpoint():
|
395 |
+
# On your infrastructure, you may want to override this to automatically
|
396 |
+
# discover the latest checkpoint on your blob storage, etc.
|
397 |
+
return None
|
398 |
+
|
399 |
+
|
400 |
+
def find_ema_checkpoint(main_checkpoint, step, rate):
|
401 |
+
if main_checkpoint is None:
|
402 |
+
return None
|
403 |
+
filename = f"ema_{rate}_{(step):06d}.pt"
|
404 |
+
path = bf.join(bf.dirname(main_checkpoint), filename)
|
405 |
+
if bf.exists(path):
|
406 |
+
return path
|
407 |
+
return None
|
408 |
+
|
409 |
+
|
410 |
+
def log_loss_dict(diffusion, ts, losses):
|
411 |
+
for key, values in losses.items():
|
412 |
+
logger.logkv_mean(key, values.mean().item())
|
413 |
+
# Log the quantiles (four quartiles, in particular).
|
414 |
+
for sub_t, sub_loss in zip(ts.cpu().numpy(), values.detach().cpu().numpy()):
|
415 |
+
quartile = int(4 * sub_t / diffusion.num_timesteps)
|
416 |
+
logger.logkv_mean(f"{key}_q{quartile}", sub_loss)
|
house_diffusion/transformer.py
ADDED
@@ -0,0 +1,284 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch as th
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
|
6 |
+
from .nn import timestep_embedding
|
7 |
+
|
8 |
+
def dec2bin(xinp, bits):
|
9 |
+
mask = 2 ** th.arange(bits - 1, -1, -1).to(xinp.device, xinp.dtype)
|
10 |
+
return xinp.unsqueeze(-1).bitwise_and(mask).ne(0).float()
|
11 |
+
|
12 |
+
class PositionalEncoding(nn.Module):
|
13 |
+
|
14 |
+
def __init__(self, d_model: int, dropout: float = 0.1, max_len: int = 5000):
|
15 |
+
super().__init__()
|
16 |
+
self.dropout = nn.Dropout(p=dropout)
|
17 |
+
|
18 |
+
position = th.arange(max_len).unsqueeze(1)
|
19 |
+
div_term = th.exp(th.arange(0, d_model, 2) * (-math.log(10000.0) / d_model))
|
20 |
+
pe = th.zeros(1, max_len, d_model)
|
21 |
+
pe[0, :, 0::2] = th.sin(position * div_term)
|
22 |
+
pe[0, :, 1::2] = th.cos(position * div_term)
|
23 |
+
self.register_buffer('pe', pe)
|
24 |
+
|
25 |
+
def forward(self, x):
|
26 |
+
"""
|
27 |
+
Args:
|
28 |
+
x: Tensor, shape [batch_size, seq_len, embedding_dim]
|
29 |
+
"""
|
30 |
+
x = x + self.pe[0:1, :x.size(1)]
|
31 |
+
return self.dropout(x)
|
32 |
+
|
33 |
+
class FeedForward(nn.Module):
|
34 |
+
def __init__(self, d_model, d_ff, dropout, activation):
|
35 |
+
super().__init__()
|
36 |
+
# We set d_ff as a default to 2048
|
37 |
+
self.linear_1 = nn.Linear(d_model, d_ff)
|
38 |
+
self.dropout = nn.Dropout(dropout)
|
39 |
+
self.linear_2 = nn.Linear(d_ff, d_model)
|
40 |
+
self.activation = activation
|
41 |
+
def forward(self, x):
|
42 |
+
x = self.dropout(self.activation(self.linear_1(x)))
|
43 |
+
x = self.linear_2(x)
|
44 |
+
return x
|
45 |
+
|
46 |
+
def attention(q, k, v, d_k, mask=None, dropout=None):
|
47 |
+
scores = th.matmul(q, k.transpose(-2, -1)) / math.sqrt(d_k)
|
48 |
+
if mask is not None:
|
49 |
+
mask = mask.unsqueeze(1)
|
50 |
+
scores = scores.masked_fill(mask == 1, -1e9)
|
51 |
+
scores = F.softmax(scores, dim=-1)
|
52 |
+
if dropout is not None:
|
53 |
+
scores = dropout(scores)
|
54 |
+
output = th.matmul(scores, v)
|
55 |
+
return output
|
56 |
+
|
57 |
+
class MultiHeadAttention(nn.Module):
|
58 |
+
def __init__(self, heads, d_model, dropout = 0.1):
|
59 |
+
super().__init__()
|
60 |
+
self.d_model = d_model
|
61 |
+
self.d_k = d_model // heads
|
62 |
+
self.h = heads
|
63 |
+
self.q_linear = nn.Linear(d_model, d_model)
|
64 |
+
self.v_linear = nn.Linear(d_model, d_model)
|
65 |
+
self.k_linear = nn.Linear(d_model, d_model)
|
66 |
+
self.dropout = nn.Dropout(dropout)
|
67 |
+
self.out = nn.Linear(d_model, d_model)
|
68 |
+
|
69 |
+
def forward(self, q, k, v, mask=None):
|
70 |
+
bs = q.size(0)
|
71 |
+
# perform linear operation and split into h heads
|
72 |
+
k = self.k_linear(k).view(bs, -1, self.h, self.d_k)
|
73 |
+
q = self.q_linear(q).view(bs, -1, self.h, self.d_k)
|
74 |
+
v = self.v_linear(v).view(bs, -1, self.h, self.d_k)
|
75 |
+
# transpose to get dimensions bs * h * sl * d_model
|
76 |
+
k = k.transpose(1,2)
|
77 |
+
q = q.transpose(1,2)
|
78 |
+
v = v.transpose(1,2)# calculate attention using function we will define next
|
79 |
+
#TODO
|
80 |
+
mask = mask.to('cuda:0')
|
81 |
+
scores = attention(q, k, v, self.d_k, mask, self.dropout)
|
82 |
+
# concatenate heads and put through final linear layer
|
83 |
+
concat = scores.transpose(1,2).contiguous().view(bs, -1, self.d_model)
|
84 |
+
output = self.out(concat)
|
85 |
+
return output
|
86 |
+
|
87 |
+
class EncoderLayer(nn.Module):
|
88 |
+
def __init__(self, d_model, heads, dropout, activation):
|
89 |
+
super().__init__()
|
90 |
+
self.norm_1 = nn.InstanceNorm1d(d_model)
|
91 |
+
self.norm_2 = nn.InstanceNorm1d(d_model)
|
92 |
+
self.self_attn = MultiHeadAttention(heads, d_model)
|
93 |
+
self.door_attn = MultiHeadAttention(heads, d_model)
|
94 |
+
self.gen_attn = MultiHeadAttention(heads, d_model)
|
95 |
+
self.ff = FeedForward(d_model, d_model*2, dropout, activation)
|
96 |
+
self.dropout = nn.Dropout(dropout)
|
97 |
+
|
98 |
+
def forward(self, x, door_mask, self_mask, gen_mask):
|
99 |
+
assert (gen_mask.max()==1 and gen_mask.min()==0), f"{gen_mask.max()}, {gen_mask.min()}"
|
100 |
+
x2 = self.norm_1(x)
|
101 |
+
x = x + self.dropout(self.door_attn(x2,x2,x2,door_mask)) \
|
102 |
+
+ self.dropout(self.self_attn(x2, x2, x2, self_mask)) \
|
103 |
+
+ self.dropout(self.gen_attn(x2, x2, x2, gen_mask))
|
104 |
+
x2 = self.norm_2(x)
|
105 |
+
x = x + self.dropout(self.ff(x2))
|
106 |
+
return x
|
107 |
+
|
108 |
+
class TransformerModel(nn.Module):
|
109 |
+
"""
|
110 |
+
The full Transformer model with timestep embedding.
|
111 |
+
"""
|
112 |
+
|
113 |
+
def __init__(
|
114 |
+
self,
|
115 |
+
in_channels,
|
116 |
+
condition_channels,
|
117 |
+
model_channels,
|
118 |
+
out_channels,
|
119 |
+
dataset,
|
120 |
+
use_checkpoint,
|
121 |
+
use_unet,
|
122 |
+
analog_bit,
|
123 |
+
):
|
124 |
+
super().__init__()
|
125 |
+
self.in_channels = in_channels
|
126 |
+
self.condition_channels = condition_channels
|
127 |
+
self.model_channels = model_channels
|
128 |
+
self.out_channels = out_channels
|
129 |
+
self.time_channels = model_channels
|
130 |
+
self.use_checkpoint = use_checkpoint
|
131 |
+
self.analog_bit = analog_bit
|
132 |
+
self.use_unet = use_unet
|
133 |
+
self.num_layers = 4
|
134 |
+
|
135 |
+
# self.pos_encoder = PositionalEncoding(model_channels, 0.001)
|
136 |
+
# self.activation = nn.SiLU()
|
137 |
+
self.activation = nn.ReLU()
|
138 |
+
|
139 |
+
self.time_embed = nn.Sequential(
|
140 |
+
nn.Linear(self.model_channels, self.model_channels),
|
141 |
+
nn.SiLU(),
|
142 |
+
nn.Linear(self.model_channels, self.time_channels),
|
143 |
+
)
|
144 |
+
self.input_emb = nn.Linear(self.in_channels, self.model_channels)
|
145 |
+
self.condition_emb = nn.Linear(self.condition_channels, self.model_channels)
|
146 |
+
|
147 |
+
if use_unet:
|
148 |
+
self.unet = UNet(self.model_channels, 1)
|
149 |
+
|
150 |
+
self.transformer_layers = nn.ModuleList([EncoderLayer(self.model_channels, 4, 0.1, self.activation) for x in range(self.num_layers)])
|
151 |
+
# self.transformer_layers = nn.ModuleList([nn.TransformerEncoderLayer(self.model_channels, 4, self.model_channels*2, 0.1, self.activation, batch_first=True) for x in range(self.num_layers)])
|
152 |
+
|
153 |
+
self.output_linear1 = nn.Linear(self.model_channels, self.model_channels)
|
154 |
+
self.output_linear2 = nn.Linear(self.model_channels, self.model_channels//2)
|
155 |
+
self.output_linear3 = nn.Linear(self.model_channels//2, self.out_channels)
|
156 |
+
|
157 |
+
if not self.analog_bit:
|
158 |
+
self.output_linear_bin1 = nn.Linear(162+self.model_channels, self.model_channels)
|
159 |
+
self.output_linear_bin2 = EncoderLayer(self.model_channels, 1, 0.1, self.activation)
|
160 |
+
self.output_linear_bin3 = EncoderLayer(self.model_channels, 1, 0.1, self.activation)
|
161 |
+
self.output_linear_bin4 = nn.Linear(self.model_channels, 16)
|
162 |
+
|
163 |
+
print(f"Number of model parameters: {sum(p.numel() for p in self.parameters() if p.requires_grad)}")
|
164 |
+
|
165 |
+
def expand_points(self, points, connections):
|
166 |
+
def average_points(point1, point2):
|
167 |
+
points_new = (point1+point2)/2
|
168 |
+
return points_new
|
169 |
+
p1 = points
|
170 |
+
p1 = p1.view([p1.shape[0], p1.shape[1], 2, -1])
|
171 |
+
p5 = points[th.arange(points.shape[0])[:, None], connections[:,:,1].long()]
|
172 |
+
p5 = p5.view([p5.shape[0], p5.shape[1], 2, -1])
|
173 |
+
p3 = average_points(p1, p5)
|
174 |
+
p2 = average_points(p1, p3)
|
175 |
+
p4 = average_points(p3, p5)
|
176 |
+
p1_5 = average_points(p1, p2)
|
177 |
+
p2_5 = average_points(p2, p3)
|
178 |
+
p3_5 = average_points(p3, p4)
|
179 |
+
p4_5 = average_points(p4, p5)
|
180 |
+
points_new = th.cat((p1.view_as(points), p1_5.view_as(points), p2.view_as(points),
|
181 |
+
p2_5.view_as(points), p3.view_as(points), p3_5.view_as(points), p4.view_as(points), p4_5.view_as(points), p5.view_as(points)), 2)
|
182 |
+
return points_new.detach()
|
183 |
+
|
184 |
+
def create_image(self, points, connections, room_indices, img_size=256, res=200):
|
185 |
+
img = th.zeros((points.shape[0], 1, img_size, img_size), device=points.device)
|
186 |
+
points = (points+1)*(img_size//2)
|
187 |
+
points[points>=img_size] = img_size-1
|
188 |
+
points[points<0] = 0
|
189 |
+
p1 = points
|
190 |
+
p2 = points[th.arange(points.shape[0])[:, None], connections[:,:,1].long()]
|
191 |
+
|
192 |
+
slope = (p2[:,:,1]-p1[:,:,1])/((p2[:,:,0]-p1[:,:,0]))
|
193 |
+
slope[slope.isnan()] = 0
|
194 |
+
slope[slope.isinf()] = 1
|
195 |
+
|
196 |
+
m = th.linspace(0, 1, res, device=points.device)
|
197 |
+
new_shape = [p2.shape[0], res, p2.shape[1], p2.shape[2]]
|
198 |
+
|
199 |
+
new_p2 = p2.unsqueeze(1).expand(new_shape)
|
200 |
+
new_p1 = p1.unsqueeze(1).expand(new_shape)
|
201 |
+
new_room_indices = room_indices.unsqueeze(1).expand([p2.shape[0], res, p2.shape[1], 1])
|
202 |
+
|
203 |
+
inc = new_p2 - new_p1
|
204 |
+
|
205 |
+
xs = m.view(1,-1,1) * inc[:,:,:,0]
|
206 |
+
xs = xs + new_p1[:,:,:,0]
|
207 |
+
xs = xs.long()
|
208 |
+
|
209 |
+
x_inc = th.where(inc[:,:,:,0]==0, inc[:,:,:,1], inc[:,:,:,0])
|
210 |
+
x_inc = m.view(1,-1,1) * x_inc
|
211 |
+
ys = x_inc * slope.unsqueeze(1) + new_p1[:,:,:,1]
|
212 |
+
ys = ys.long()
|
213 |
+
|
214 |
+
img[th.arange(xs.shape[0])[:, None], :, xs.view(img.shape[0], -1), ys.view(img.shape[0], -1)] = new_room_indices.reshape(img.shape[0], -1, 1).float()
|
215 |
+
return img.detach()
|
216 |
+
|
217 |
+
def forward(self, x, timesteps, xtalpha, epsalpha, is_syn=False, **kwargs):
|
218 |
+
"""
|
219 |
+
Apply the model to an input batch.
|
220 |
+
|
221 |
+
:param x: an [N x S x C] Tensor of inputs.
|
222 |
+
:param timesteps: a 1-D batch of timesteps.
|
223 |
+
:param y: an [N] Tensor of labels, if class-conditional.
|
224 |
+
:return: an [N x S x C] Tensor of outputs.
|
225 |
+
"""
|
226 |
+
# prefix = 'syn_' if is_syn else ''
|
227 |
+
prefix = 'syn_' if is_syn else ''
|
228 |
+
x = x.permute([0, 2, 1]).float() # -> convert [N x C x S] to [N x S x C]
|
229 |
+
|
230 |
+
if not self.analog_bit:
|
231 |
+
x = self.expand_points(x, kwargs[f'{prefix}connections'])
|
232 |
+
|
233 |
+
# Different input embeddings (Input, Time, Conditions)
|
234 |
+
#TODO---------------------------------------------------------------
|
235 |
+
x = x.to('cuda:0')
|
236 |
+
timesteps = timesteps.to(x.device)
|
237 |
+
# print(x.device)
|
238 |
+
|
239 |
+
time_emb = self.time_embed(timestep_embedding(timesteps, self.model_channels))
|
240 |
+
time_emb = time_emb.unsqueeze(1)
|
241 |
+
input_emb = self.input_emb(x)
|
242 |
+
if self.condition_channels>0:
|
243 |
+
cond = None
|
244 |
+
for key in [f'{prefix}room_types', f'{prefix}corner_indices', f'{prefix}room_indices']:
|
245 |
+
if cond is None:
|
246 |
+
cond = kwargs[key]
|
247 |
+
else:
|
248 |
+
cond = th.cat((cond, kwargs[key]), 2)
|
249 |
+
#TODO
|
250 |
+
cond = cond.to('cuda:0')
|
251 |
+
cond_emb = self.condition_emb(cond.float())
|
252 |
+
|
253 |
+
# PositionalEncoding and DM model
|
254 |
+
out = input_emb + cond_emb + time_emb.repeat((1, input_emb.shape[1], 1))
|
255 |
+
for layer in self.transformer_layers:
|
256 |
+
out = layer(out, kwargs[f'{prefix}door_mask'], kwargs[f'{prefix}self_mask'], kwargs[f'{prefix}gen_mask'])
|
257 |
+
|
258 |
+
out_dec = self.output_linear1(out)
|
259 |
+
out_dec = self.activation(out_dec)
|
260 |
+
out_dec = self.output_linear2(out_dec)
|
261 |
+
out_dec = self.output_linear3(out_dec)
|
262 |
+
|
263 |
+
if not self.analog_bit:
|
264 |
+
out_bin_start = x*xtalpha.repeat([1,1,9]) - out_dec.repeat([1,1,9]) * epsalpha.repeat([1,1,9])
|
265 |
+
out_bin = (out_bin_start/2 + 0.5) # -> [0,1]
|
266 |
+
out_bin = out_bin * 256 #-> [0, 256]
|
267 |
+
out_bin = dec2bin(out_bin.round().int(), 8)
|
268 |
+
out_bin_inp = out_bin.reshape([x.shape[0], x.shape[1], 16*9])
|
269 |
+
out_bin_inp[out_bin_inp==0] = -1
|
270 |
+
|
271 |
+
out_bin = th.cat((out_bin_start, out_bin_inp, cond_emb), 2)
|
272 |
+
out_bin = self.activation(self.output_linear_bin1(out_bin))
|
273 |
+
out_bin = self.output_linear_bin2(out_bin, kwargs[f'{prefix}door_mask'], kwargs[f'{prefix}self_mask'], kwargs[f'{prefix}gen_mask'])
|
274 |
+
out_bin = self.output_linear_bin3(out_bin, kwargs[f'{prefix}door_mask'], kwargs[f'{prefix}self_mask'], kwargs[f'{prefix}gen_mask'])
|
275 |
+
out_bin = self.output_linear_bin4(out_bin)
|
276 |
+
|
277 |
+
out_bin = out_bin.permute([0, 2, 1]) # -> convert back [N x S x C] to [N x C x S]
|
278 |
+
|
279 |
+
out_dec = out_dec.permute([0, 2, 1]) # -> convert back [N x S x C] to [N x C x S]
|
280 |
+
|
281 |
+
if not self.analog_bit:
|
282 |
+
return out_dec, out_bin
|
283 |
+
else:
|
284 |
+
return out_dec, None
|
house_diffusion/transformer_models.py
ADDED
@@ -0,0 +1,228 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.nn as nn
|
2 |
+
from .transformer import TransformerModel, EncoderLayer
|
3 |
+
|
4 |
+
|
5 |
+
# class TransformerModels(nn.Module):
|
6 |
+
class TransformerModels:
|
7 |
+
def __init__(self, model, device):
|
8 |
+
self.model = model
|
9 |
+
self.device = device
|
10 |
+
|
11 |
+
""" ------------------------------- 1) Normalize ------------------------------- """
|
12 |
+
|
13 |
+
def replace_InstanceNorm1d_LayerNorm(self):
|
14 |
+
self.freeze_unfreeze(True)
|
15 |
+
for name, layer in self.model.named_modules():
|
16 |
+
if isinstance(layer, nn.InstanceNorm1d):
|
17 |
+
num_features = layer.num_features
|
18 |
+
new_layer = nn.LayerNorm(normalized_shape=num_features).to(self.device)
|
19 |
+
parent_module = dict(self.model.named_modules())[name.rsplit('.', 1)[0]]
|
20 |
+
setattr(parent_module, name.split('.')[-1], new_layer)
|
21 |
+
|
22 |
+
return self.model
|
23 |
+
|
24 |
+
def set_affine_true_for_instance_norm(self):
|
25 |
+
self.freeze_unfreeze(True)
|
26 |
+
for name, layer in self.model.named_modules():
|
27 |
+
if isinstance(layer, nn.InstanceNorm1d):
|
28 |
+
new_layer = nn.InstanceNorm1d(num_features=100, affine=True).to(self.device)
|
29 |
+
parent_module = dict(self.model.named_modules())[name.rsplit('.', 1)[0]]
|
30 |
+
setattr(parent_module, name.split('.')[-1], new_layer)
|
31 |
+
|
32 |
+
return self.model
|
33 |
+
|
34 |
+
""" ---------------------------------------------------------------------------- """
|
35 |
+
""" -------------------------- 2) Activation Function -------------------------- """
|
36 |
+
|
37 |
+
def replace_activation_function(self, activation):
|
38 |
+
self.freeze_unfreeze(True)
|
39 |
+
functions = {
|
40 |
+
"GELU": nn.GELU(),
|
41 |
+
"LeakyReLU": nn.LeakyReLU(),
|
42 |
+
"ELU": nn.ELU(),
|
43 |
+
"Mish": nn.Mish(),
|
44 |
+
# "ReLU": nn.ReLU(),
|
45 |
+
}
|
46 |
+
|
47 |
+
def replace_activation_in_module(module, activation_layer):
|
48 |
+
for name, child in module.named_children():
|
49 |
+
if isinstance(child, nn.ReLU):
|
50 |
+
setattr(module, name, activation_layer)
|
51 |
+
else:
|
52 |
+
replace_activation_in_module(child, activation_layer)
|
53 |
+
|
54 |
+
new_activation_layer = functions[activation].to(self.device)
|
55 |
+
replace_activation_in_module(self.model, new_activation_layer)
|
56 |
+
return self.model
|
57 |
+
|
58 |
+
""" ---------------------------------------------------------------------------- """
|
59 |
+
""" ---------------------------- 3) New Encoder Layers ------------------------- """
|
60 |
+
|
61 |
+
def add_encoder_layers(self, num_new_layers=2):
|
62 |
+
self.freeze_unfreeze(True)
|
63 |
+
new_encoder_layers = [EncoderLayer(512, 4, 0.1, nn.ReLU()).to(self.device) for _ in range(num_new_layers)]
|
64 |
+
|
65 |
+
for i, new_layer in enumerate(new_encoder_layers):
|
66 |
+
self.model.transformer_layers.insert(4 + i, new_layer.to(self.device))
|
67 |
+
|
68 |
+
return self.model
|
69 |
+
|
70 |
+
""" ---------------------------------------------------------------------------- """
|
71 |
+
""" -------------------------------- 4) Dropout -------------------------------- """
|
72 |
+
|
73 |
+
# def dropout_value_change(self, val=0.1):
|
74 |
+
# self.freeze_unfreeze(True)
|
75 |
+
# for layer in self.model.modules():
|
76 |
+
# if isinstance(layer, nn.Dropout):
|
77 |
+
# layer.p = val
|
78 |
+
#
|
79 |
+
# return self.model
|
80 |
+
|
81 |
+
def dropout_value_change(self, val=0.1):
|
82 |
+
self.freeze_unfreeze(True)
|
83 |
+
|
84 |
+
def replace_dropouts_in_module(module, rate):
|
85 |
+
for name, child in module.named_children():
|
86 |
+
if isinstance(child, nn.Dropout):
|
87 |
+
setattr(module, name, nn.Dropout(rate).to(self.device))
|
88 |
+
else:
|
89 |
+
replace_dropouts_in_module(child, rate)
|
90 |
+
|
91 |
+
replace_dropouts_in_module(self.model, val)
|
92 |
+
|
93 |
+
return self.model
|
94 |
+
|
95 |
+
""" ---------------------------------------------------------------------------- """
|
96 |
+
""" ------------------------- 5) Output linear layers -------------------------- """
|
97 |
+
|
98 |
+
def change_linear_output_layers(self):
|
99 |
+
output_layers_names = [
|
100 |
+
"output_linear1",
|
101 |
+
"output_linear2",
|
102 |
+
"output_linear3",
|
103 |
+
"output_linear_bin1",
|
104 |
+
"output_linear_bin2",
|
105 |
+
"output_linear_bin3",
|
106 |
+
]
|
107 |
+
for name, param in self.model.named_parameters():
|
108 |
+
param.requires_grad = False
|
109 |
+
if name.split(".")[0] in output_layers_names:
|
110 |
+
param.requires_grad = True
|
111 |
+
|
112 |
+
output_linear1 = self.model.output_linear1
|
113 |
+
output_linear2 = self.model.output_linear2
|
114 |
+
output_linear3 = self.model.output_linear3
|
115 |
+
output_linear_bin1 = self.model.output_linear_bin1
|
116 |
+
output_linear_bin2 = self.model.output_linear_bin2
|
117 |
+
output_linear_bin3 = self.model.output_linear_bin3
|
118 |
+
|
119 |
+
output_linear11 = nn.Linear(output_linear1.out_features,
|
120 |
+
output_linear1.out_features).to(self.device)
|
121 |
+
output_linear21 = nn.Linear(output_linear2.out_features,
|
122 |
+
output_linear2.out_features).to(self.device)
|
123 |
+
|
124 |
+
# self.model.output_layers = nn.Sequential(
|
125 |
+
# output_linear1,
|
126 |
+
# output_linear11,
|
127 |
+
# output_linear2,
|
128 |
+
# output_linear21,
|
129 |
+
# output_linear3,
|
130 |
+
# output_linear_bin1,
|
131 |
+
# output_linear_bin2,
|
132 |
+
# output_linear_bin3,
|
133 |
+
# )
|
134 |
+
self.model.insert(6, output_linear11)
|
135 |
+
self.model.insert(8, output_linear21)
|
136 |
+
|
137 |
+
return self.model
|
138 |
+
|
139 |
+
# def change_linear_output_layers(self):
|
140 |
+
# output_layers_names = [
|
141 |
+
# "output_linear1",
|
142 |
+
# "output_linear2",
|
143 |
+
# "output_linear3",
|
144 |
+
# "output_linear_bin1",
|
145 |
+
# "output_linear_bin2",
|
146 |
+
# "output_linear_bin3",
|
147 |
+
# ]
|
148 |
+
# for name, param in self.model.named_parameters():
|
149 |
+
# param.requires_grad = False
|
150 |
+
# if name.split(".")[0] in output_layers_names:
|
151 |
+
# param.requires_grad = True
|
152 |
+
#
|
153 |
+
# output_linear1 = self.model.output_linear1
|
154 |
+
# output_linear2 = self.model.output_linear2
|
155 |
+
# output_linear3 = self.model.output_linear3
|
156 |
+
# # output_linear_bin1 = self.model.output_linear_bin1
|
157 |
+
# # output_linear_bin2 = self.model.output_linear_bin2
|
158 |
+
# # output_linear_bin3 = self.model.output_linear_bin3
|
159 |
+
#
|
160 |
+
# output_linear11 = nn.Linear(output_linear1.out_features,
|
161 |
+
# output_linear1.out_features).to(self.device)
|
162 |
+
# output_linear21 = nn.Linear(output_linear2.out_features,
|
163 |
+
# output_linear2.out_features).to(self.device)
|
164 |
+
#
|
165 |
+
# self.model.output_linear1.append(output_linear11.to(self.device))
|
166 |
+
# self.model.output_linear2.append(output_linear21.to(self.device))
|
167 |
+
#
|
168 |
+
# # self.model.output_layers = nn.Sequential(
|
169 |
+
# # output_linear1,
|
170 |
+
# # output_linear11,
|
171 |
+
# # output_linear2,
|
172 |
+
# # output_linear21,
|
173 |
+
# # output_linear3,
|
174 |
+
# # output_linear_bin1,
|
175 |
+
# # output_linear_bin2,
|
176 |
+
# # output_linear_bin3,
|
177 |
+
# # )
|
178 |
+
#
|
179 |
+
# return self.model
|
180 |
+
|
181 |
+
""" ---------------------------------------------------------------------------- """
|
182 |
+
""" ---------------------------- 6) Cross-Attention ---------------------------- """
|
183 |
+
|
184 |
+
def add_cross_attention(self, embed_dim=512, num_heads=8, dropout=0.1):
|
185 |
+
self.freeze_unfreeze(True)
|
186 |
+
for idx, layer in enumerate(self.model.transformer_layers):
|
187 |
+
cross_attn_layer = CrossAttentionLayer(embed_dim, num_heads, dropout).to(self.device)
|
188 |
+
layer.gen_attn = nn.Sequential(layer.gen_attn, cross_attn_layer).to(self.device)
|
189 |
+
|
190 |
+
return self.model
|
191 |
+
|
192 |
+
""" ---------------------------------------------------------------------------- """
|
193 |
+
""" -------------------------- 7) Residual Connections? ------------------------- """
|
194 |
+
|
195 |
+
""" ---------------------------------------------------------------------------- """
|
196 |
+
""" ------------------------------- 8) Attention Heads? (check if works with same params) ------------------------------- """
|
197 |
+
|
198 |
+
""" ---------------------------------------------------------------------------- """
|
199 |
+
#Add LayerNorm Before/After Attention
|
200 |
+
|
201 |
+
# ADAM ?
|
202 |
+
# weight decay ?
|
203 |
+
# learning rate?
|
204 |
+
|
205 |
+
def freeze_unfreeze(self, flag):
|
206 |
+
for param in self.model.parameters():
|
207 |
+
param.requires_grad = flag
|
208 |
+
|
209 |
+
def count_parameters(self):
|
210 |
+
model = self.model
|
211 |
+
trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
|
212 |
+
untrainable_params = sum(p.numel() for p in model.parameters() if not p.requires_grad)
|
213 |
+
|
214 |
+
print(f"Trainable parameters: {trainable_params}")
|
215 |
+
print(f"Untrainable parameters: {untrainable_params}")
|
216 |
+
return trainable_params, untrainable_params
|
217 |
+
|
218 |
+
|
219 |
+
class CrossAttentionLayer(nn.Module):
|
220 |
+
def __init__(self, embed_dim, num_heads, dropout=0.1):
|
221 |
+
super(CrossAttentionLayer, self).__init__()
|
222 |
+
self.cross_attn = nn.MultiheadAttention(embed_dim, num_heads, dropout=dropout)
|
223 |
+
self.norm = nn.LayerNorm(embed_dim)
|
224 |
+
self.dropout = nn.Dropout(dropout)
|
225 |
+
|
226 |
+
def forward(self, query, key_value, attn_mask=None):
|
227 |
+
attn_output, _ = self.cross_attn(query, key_value, key_value, attn_mask=attn_mask)
|
228 |
+
return self.norm(self.dropout(attn_output) + query)
|