Spaces:
Sleeping
Sleeping
File size: 3,488 Bytes
e4f36a2 2996de6 e4f36a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
import gradio as gr
from groq import Groq
import os
# Initialize Groq client
client = Groq(api_key=os.environ["GROQ_API_KEY"])
def generate_tutor_output(subject, difficulty, student_input):
prompt = f"""
You are an expert tutor in {subject} at the {difficulty} level.
The student has provided the following input: "{student_input}"
Please generate:
1. A brief, engaging lesson on the topic (2-3 paragraphs)
2. A thought-provoking question to check understanding
3. Constructive feedback on the student's input
Format your response as a JSON object with keys: "lesson", "question", "feedback"
"""
completion = client.chat.completions.create(
messages=[
{
"role": "system",
"content": "You are the world's best AI tutor, renowned for your ability to explain complex concepts in an engaging, clear, and memorable way and giving math examples. Your expertise in {subject} is unparalleled, and you're adept at tailoring your teaching to {difficulty} level students. Your goal is to not just impart knowledge, but to inspire a love for learning and critical thinking.",
},
{
"role": "user",
"content": prompt,
}
],
model="llama3-groq-70b-8192-tool-use-preview",
max_tokens=1000,
)
return completion.choices[0].message.content
with gr.Blocks() as demo:
gr.Markdown("# 🎓 Your AI Tutor by Farhan")
with gr.Row():
with gr.Column(scale=2):
subject = gr.Dropdown(
["Math", "Science", "History", "Literature", "Code", "AI"],
label="Subject",
info="Choose the subject of your lesson"
)
difficulty = gr.Radio(
["Beginner", "Intermediate", "Advanced"],
label="Difficulty Level",
info="Select your proficiency level"
)
student_input = gr.Textbox(
placeholder="Type your query here...",
label="Your Input",
info="Enter the topic you want to learn"
)
submit_button = gr.Button("Generate Lesson", variant="primary")
with gr.Column(scale=3):
lesson_output = gr.Markdown(label="Lesson")
question_output = gr.Markdown(label="Comprehension Question")
feedback_output = gr.Markdown(label="Feedback")
gr.Markdown("""
### How to Use
1. Select a subject from the dropdown.
2. Choose your difficulty level.
3. Enter the topic or question you'd like to explore.
4. Click 'Generate Lesson' to receive a personalized lesson, question, and feedback.
5. Review the AI-generated content to enhance your learning.
6. Feel free to ask follow-up questions or explore new topics!
""")
def process_output(output):
try:
parsed = eval(output)
return parsed["lesson"], parsed["question"], parsed["feedback"]
except:
return "Error parsing output", "No question available", "No feedback available"
submit_button.click(
fn=lambda s, d, i: process_output(generate_tutor_output(s, d, i)),
inputs=[subject, difficulty, student_input],
outputs=[lesson_output, question_output, feedback_output]
)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860) |