File size: 3,488 Bytes
e4f36a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2996de6
e4f36a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import gradio as gr
from groq import Groq
import os

# Initialize Groq client
client = Groq(api_key=os.environ["GROQ_API_KEY"])

def generate_tutor_output(subject, difficulty, student_input):
    prompt = f"""
    You are an expert tutor in {subject} at the {difficulty} level. 
    The student has provided the following input: "{student_input}"
    
    Please generate:
    1. A brief, engaging lesson on the topic (2-3 paragraphs)
    2. A thought-provoking question to check understanding
    3. Constructive feedback on the student's input
    
    Format your response as a JSON object with keys: "lesson", "question", "feedback"
    """

    completion = client.chat.completions.create(
        messages=[
            {
                "role": "system",
                "content": "You are the world's best AI tutor, renowned for your ability to explain complex concepts in an engaging, clear, and memorable way and giving math examples. Your expertise in {subject} is unparalleled, and you're adept at tailoring your teaching to {difficulty} level students. Your goal is to not just impart knowledge, but to inspire a love for learning and critical thinking.",
            },
            {
                "role": "user",
                "content": prompt,
            }
        ],
        model="llama3-groq-70b-8192-tool-use-preview",
        max_tokens=1000,
    )

    return completion.choices[0].message.content

with gr.Blocks() as demo:
    gr.Markdown("# 🎓 Your AI Tutor by Farhan")
    
    with gr.Row():
        with gr.Column(scale=2):
            subject = gr.Dropdown(
                ["Math", "Science", "History", "Literature", "Code", "AI"], 
                label="Subject", 
                info="Choose the subject of your lesson"
            )
            difficulty = gr.Radio(
                ["Beginner", "Intermediate", "Advanced"], 
                label="Difficulty Level", 
                info="Select your proficiency level"
            )
            student_input = gr.Textbox(
                placeholder="Type your query here...", 
                label="Your Input", 
                info="Enter the topic you want to learn"
            )
            submit_button = gr.Button("Generate Lesson", variant="primary")
        
        with gr.Column(scale=3):
            lesson_output = gr.Markdown(label="Lesson")
            question_output = gr.Markdown(label="Comprehension Question")
            feedback_output = gr.Markdown(label="Feedback")
    
    gr.Markdown("""
    ### How to Use
    1. Select a subject from the dropdown.
    2. Choose your difficulty level.
    3. Enter the topic or question you'd like to explore.
    4. Click 'Generate Lesson' to receive a personalized lesson, question, and feedback.
    5. Review the AI-generated content to enhance your learning.
    6. Feel free to ask follow-up questions or explore new topics!
    """)
    
    def process_output(output):
        try:
            parsed = eval(output)
            return parsed["lesson"], parsed["question"], parsed["feedback"]
        except:
            return "Error parsing output", "No question available", "No feedback available"
    
    submit_button.click(
        fn=lambda s, d, i: process_output(generate_tutor_output(s, d, i)),
        inputs=[subject, difficulty, student_input],
        outputs=[lesson_output, question_output, feedback_output]
    )

if __name__ == "__main__":
    demo.launch(server_name="0.0.0.0", server_port=7860)