# import dependencies import gradio as gr from openai import OpenAI import os import random import string # define the openai key api_key = os.getenv("OPENAI_API_KEY") # make an instance of the openai client client = OpenAI(api_key = api_key) # finetuned model instance finetuned_model = "ft:gpt-3.5-turbo-0125:cedarbyte-business-solutions::AgGF39px" # text processing functions def random_capitalize(word): if word.isalpha() and random.random() < 0.1: return word.capitalize() return word def random_remove_punctuation(text): if random.random() < 0.2: text = list(text) indices = [i for i, c in enumerate(text) if c in string.punctuation] if indices: remove_indices = random.sample(indices, min(3, len(indices))) for idx in sorted(remove_indices, reverse=True): text.pop(idx) return ''.join(text) return text def random_double_period(text): if random.random() < 0.2: text = text.replace('.', '..', 3) return text def random_double_space(text): if random.random() < 0.2: words = text.split() for _ in range(min(3, len(words) - 1)): idx = random.randint(0, len(words) - 2) words[idx] += ' ' return ' '.join(words) return text def random_replace_comma_space(text, period_replace_percentage=0.33): # Count occurrences comma_occurrences = text.count(", ") period_occurrences = text.count(". ") # Replacements replace_count_comma = max(1, comma_occurrences // 3) replace_count_period = max(1, period_occurrences // 3) # Find indices comma_indices = [i for i in range(len(text)) if text.startswith(", ", i)] period_indices = [i for i in range(len(text)) if text.startswith(". ", i)] # Sample indices replace_indices_comma = random.sample(comma_indices, min(replace_count_comma, len(comma_indices))) replace_indices_period = random.sample(period_indices, min(replace_count_period, len(period_indices))) # Apply replacements for idx in sorted(replace_indices_comma + replace_indices_period, reverse=True): if text.startswith(", ", idx): text = text[:idx] + " ," + text[idx + 2:] if text.startswith(". ", idx): text = text[:idx] + " ." + text[idx + 2:] return text def transform_paragraph(paragraph): words = paragraph.split() if len(words) > 12: words = [random_capitalize(word) for word in words] transformed_paragraph = ' '.join(words) transformed_paragraph = random_remove_punctuation(transformed_paragraph) transformed_paragraph = random_double_period(transformed_paragraph) transformed_paragraph = random_double_space(transformed_paragraph) transformed_paragraph = random_replace_comma_space(transformed_paragraph) else: transformed_paragraph = paragraph transformed_paragraph = transformed_paragraph.replace("#", "*") transformed_paragraph = transformed_paragraph.replace("*", "") # transformed_paragraph = transformed_paragraph.replace(", ", " ,") return transformed_paragraph def transform_text(text): paragraphs = text.split('\n') transformed_paragraphs = [transform_paragraph(paragraph) for paragraph in paragraphs] return '\n'.join(transformed_paragraphs) # function to humanize text def humanize_text(AI_text): """Humanizes the provided AI text using the fine-tuned model.""" response = client.chat.completions.create( model=finetuned_model, temperature = 0.87, messages=[ {"role": "system", "content": """ You are a text humanizer. You humanize AI generated text. The text must appear like humanly written. THE INPUT AND THE OUTPUT HEADINGS MUST BE SAME. NO HEADING SHOULD BE MISSED. NAMES LIKE NOVEL NAME SHOULD REMAIN INTACT WITHOUT ANY CHANGE. THE INPUT AND THE OUTPUT SHOULD HAVE SAME WORD COUNT. THE OUTPUT SENTENCES MUST NOT BE SIMPLE. THEY SHOULD BE COMPOUND, COMPLEX, OR COMPOUND COMPLEX. ABOVE ALL, THE GRAMMAR AND THE SENSE OF THE SENTENCES MUST BE TOP NOTCH - DO NOT COMPROMISE ON THAT."""}, {"role": "system", "content": "YOU ARE TEXT HUMANIZER BUT YOU DO NOT REDUCE THE LENGTH OF THE SENTENCES. YOUR OUTPUT SENTENCES ARE OF EXACTLY THE SAME LENGTH AS THE INPUT"}, {"role": "user", "content": f"THE LANGUAGE OF THE INPUT AND THE OUTPUT MUST BE SAME. THE SENTENCES SHOULD NOT BE SHORT LENGTH - THEY SHOULD BE SAME AS IN THE INPUT. ALSO THE PARAGRAPHS SHOULD NOT BE SHORT EITHER - PARAGRAPHS MUST HAVE THE SAME LENGTH"}, {"role": "user", "content": f"THE GRAMMAR AND THE QUALITY OF THE SENTENCES MUST BE TOP NOTCH - EASY TO UNDERSTAND AND NO GRAMMATICAL ERRORS."}, {"role": "user", "content": "Use as many conjunctions and punctuations to make the sentence long. COMPOUND, COMPLEX, OR COMPOUND COMPLEX sentences are required"}, {"role": "user", "content": f"Humanize the text. Keep the output format i.e. the bullets and the headings as it is. THE GRAMMAR MUST BE TOP NOTCH WITH NO ERRORS AND EASY TO UNDERSTAND!!!!. \nTEXT: {AI_text}"} ] ) return response.choices[0].message.content.strip() def main_function(AI_text): humanized_text = humanize_text(AI_text) # humanized_text= transform_text(humanized_text) return humanized_text # Gradio interface definition interface = gr.Interface( fn=main_function, inputs="textbox", outputs="textbox", title="AI Text Humanizer", description="Enter AI-generated text and get a human-written version. This space is availabe for limited time only so contact farhan.sid1111@gmail.com to put this application in production.", ) # Launch the Gradio app interface.launch(debug = True) # import gradio as gr # # Function to handle text submission # def contact_info(text): # return "Contact farhan.sid1111@gmail.com for Humanizer Application service" # # Gradio interface definition # interface = gr.Interface( # fn=contact_info, # inputs="textbox", # outputs="text", # title="AI TEXT HUMANIZER", # description="Enter AI text and get its humanizer equivalent" # ) # # Launch the Gradio app # if __name__ == "__main__": # interface.launch()