import gradio as gr from utils import generate_tutor_output with gr.Blocks() as demo: gr.Markdown("# 🎓 Your AI Tutor by Farhan") with gr.Row(): with gr.Column(scale=2): subject = gr.Dropdown( ["Math", "Science", "History", "Literature", "Code", "AI"], label="Subject", info="Choose the subject of your lesson" ) difficulty = gr.Radio( ["Beginner", "Intermediate", "Advanced"], label="Difficulty Level", info="Select your proficiency level" ) student_input = gr.Textbox( placeholder="Type your query here...", label="Your Input", info="Enter the topic you want to learn" ) model = gr.Dropdown( ["LLAMA3 8B", "LLAMA3 70B", "Mixtral 8x7B"], label="LLM", info="Choose the language model" ) submit_button = gr.Button("Generate Lesson", variant="primary") with gr.Column(scale=3): lesson_output = gr.Markdown(label="Lesson") question_output = gr.Markdown(label="Comprehension Question") feedback_output = gr.Markdown(label="Feedback") gr.Markdown(""" ### How to Use 1. Select a subject from the dropdown. 2. Choose your difficulty level. 3. Enter the topic or question you'd like to explore. 4. Click 'Generate Lesson' to receive a personalized lesson, question, and feedback. 5. Review the AI-generated content to enhance your learning. 6. Feel free to ask follow-up questions or explore new topics! """) def process_output(output): try: parsed = eval(output) return parsed["lesson"], parsed["question"], parsed["feedback"] except: return "Error parsing output", "No question available", "No feedback available" submit_button.click( fn=lambda s, d, i,m : process_output(generate_tutor_output(s, d, i, m)), inputs=[subject, difficulty, student_input, model], outputs=[lesson_output, question_output, feedback_output] ) if __name__ == "__main__": demo.launch(server_name="0.0.0.0", server_port=7860, share = True)