Farhan1572 commited on
Commit
c2e0593
1 Parent(s): e4bdfb9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +53 -7
app.py CHANGED
@@ -1,31 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import spacy
2
  import gradio as gr
3
  from spacy import displacy
4
  from pdfminer.high_level import extract_text
5
 
 
6
  nlp = spacy.load("en_cv_info_extr")
7
 
8
- colors = {}
9
- for label in nlp.get_pipe('ner').labels:
10
- colors[label] = "linear-gradient(90deg, #aa9cfc, #fc9ce7)"
11
-
12
- options = {"ents": list(nlp.get_pipe('ner').labels), "colors": colors}
13
 
14
  def resume_ner(file):
 
15
  resume = extract_text(file.name)
 
 
16
  doc = nlp(resume)
 
 
17
  html = displacy.render(doc, style="ent", page=True, options=options)
 
 
18
  html = (
19
- "<div style='max-width:100%; max-height:500px; overflow:auto'>"
20
  + html
21
  + "</div>"
22
  )
 
23
  return html
24
 
 
25
  demo = gr.Interface(
26
  resume_ner,
27
  gr.File(file_types=[".pdf"]),
28
  ["html"],
29
  )
30
 
31
- demo.launch()
 
 
1
+ # import spacy
2
+ # import gradio as gr
3
+ # from spacy import displacy
4
+ # from pdfminer.high_level import extract_text
5
+
6
+ # nlp = spacy.load("en_cv_info_extr")
7
+
8
+ # colors = {}
9
+ # for label in nlp.get_pipe('ner').labels:
10
+ # colors[label] = "linear-gradient(90deg, #aa9cfc, #fc9ce7)"
11
+
12
+ # options = {"ents": list(nlp.get_pipe('ner').labels), "colors": colors}
13
+
14
+ # def resume_ner(file):
15
+ # resume = extract_text(file.name)
16
+ # doc = nlp(resume)
17
+ # html = displacy.render(doc, style="ent", page=True, options=options)
18
+ # html = (
19
+ # "<div style='max-width:100%; max-height:500px; overflow:auto'>"
20
+ # + html
21
+ # + "</div>"
22
+ # )
23
+ # return html
24
+
25
+ # demo = gr.Interface(
26
+ # resume_ner,
27
+ # gr.File(file_types=[".pdf"]),
28
+ # ["html"],
29
+ # )
30
+
31
+ # demo.launch()
32
+
33
+
34
+
35
+
36
+
37
+
38
+
39
  import spacy
40
  import gradio as gr
41
  from spacy import displacy
42
  from pdfminer.high_level import extract_text
43
 
44
+ # Load the custom NER model
45
  nlp = spacy.load("en_cv_info_extr")
46
 
47
+ # Define the options for displacy.render with no colors
48
+ options = {"ents": list(nlp.get_pipe('ner').labels), "colors": {}}
 
 
 
49
 
50
  def resume_ner(file):
51
+ # Extract text from the PDF
52
  resume = extract_text(file.name)
53
+
54
+ # Process the text with the NLP model
55
  doc = nlp(resume)
56
+
57
+ # Render the entities in plain HTML (no colors)
58
  html = displacy.render(doc, style="ent", page=True, options=options)
59
+
60
+ # Wrap the HTML in a div for better display
61
  html = (
62
+ "<div style='max-width:100%; max-height:500px; overflow:auto; font-family: Arial, sans-serif;'>"
63
  + html
64
  + "</div>"
65
  )
66
+
67
  return html
68
 
69
+ # Create the Gradio interface
70
  demo = gr.Interface(
71
  resume_ner,
72
  gr.File(file_types=[".pdf"]),
73
  ["html"],
74
  )
75
 
76
+ # Launch the Gradio app
77
+ demo.launch()