Update app.py
Browse files
app.py
CHANGED
@@ -2,12 +2,74 @@ from rdkit import Chem
|
|
2 |
from rdkit.Chem import Draw
|
3 |
from transformers import pipeline
|
4 |
import gradio as gr
|
5 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
model_checkpoint = "FartLabs/FART_Augmented"
|
8 |
classifier = pipeline("text-classification", model=model_checkpoint, top_k=None)
|
9 |
|
10 |
-
def process_smiles(smiles):
|
11 |
# Validate and canonicalize SMILES
|
12 |
mol = Chem.MolFromSmiles(smiles)
|
13 |
if mol is None:
|
@@ -18,9 +80,14 @@ def process_smiles(smiles):
|
|
18 |
predictions = classifier(canonical_smiles)
|
19 |
|
20 |
# Generate molecule image
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
# Convert predictions to a friendly format
|
26 |
prediction_dict = {pred["label"]: pred["score"] for pred in predictions[0]}
|
@@ -29,7 +96,10 @@ def process_smiles(smiles):
|
|
29 |
|
30 |
iface = gr.Interface(
|
31 |
fn=process_smiles,
|
32 |
-
inputs=
|
|
|
|
|
|
|
33 |
outputs=[
|
34 |
gr.Label(num_top_classes=3, label="Classification Probabilities"),
|
35 |
gr.Image(type="filepath", label="Molecule Image"),
|
|
|
2 |
from rdkit.Chem import Draw
|
3 |
from transformers import pipeline
|
4 |
import gradio as gr
|
5 |
+
from rdkit import Chem
|
6 |
+
from rdkit.Chem import Draw
|
7 |
+
from rdkit.Chem.Draw import SimilarityMaps
|
8 |
+
import io
|
9 |
+
from PIL import Image
|
10 |
+
import numpy as np
|
11 |
+
import rdkit
|
12 |
+
|
13 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
14 |
+
from transformers_interpret import SequenceClassificationExplainer
|
15 |
+
|
16 |
+
model_name = "FartLabs/FART_Augmented"
|
17 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
18 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
19 |
+
|
20 |
+
cls_explainer = SequenceClassificationExplainer(model, tokenizer)
|
21 |
+
|
22 |
+
def save_high_quality_png(smiles, title, bw=True, padding=0.05):
|
23 |
+
"""
|
24 |
+
Generates a high-quality PNG of atom-wise gradients or importance scores for a molecule.
|
25 |
+
Parameters:
|
26 |
+
- smiles (str): The SMILES string of the molecule to visualize.
|
27 |
+
- token_importance (list): List of importance scores for each atom.
|
28 |
+
- bw (bool): If True, renders the molecule in black and white.
|
29 |
+
- padding (float): Padding for molecule drawing.
|
30 |
+
- output_file (str): Path to save the high-quality PNG file.
|
31 |
+
Returns:
|
32 |
+
- None
|
33 |
+
"""
|
34 |
+
|
35 |
+
# Convert SMILES string to RDKit molecule object
|
36 |
+
molecule = Chem.MolFromSmiles(smiles)
|
37 |
+
Chem.rdDepictor.Compute2DCoords(molecule)
|
38 |
+
|
39 |
+
# Get token importance scores and map to atoms
|
40 |
+
token_importance = cls_explainer(smiles)
|
41 |
+
atom_importance = [c[1] for c in token_importance if c[0].isalpha()]
|
42 |
+
num_atoms = molecule.GetNumAtoms()
|
43 |
+
atom_importance = atom_importance[:num_atoms]
|
44 |
+
|
45 |
+
# Set a large canvas size for high resolution
|
46 |
+
d = Draw.MolDraw2DCairo(1500, 1500)
|
47 |
+
|
48 |
+
dopts = d.drawOptions()
|
49 |
+
dopts.padding = padding
|
50 |
+
dopts.maxFontSize = 2000
|
51 |
+
dopts.bondLineWidth = 5
|
52 |
+
|
53 |
+
# Optionally set black and white palette
|
54 |
+
if bw:
|
55 |
+
d.drawOptions().useBWAtomPalette()
|
56 |
+
|
57 |
+
# Generate and display a similarity map based on atom importance scores
|
58 |
+
SimilarityMaps.GetSimilarityMapFromWeights(molecule, atom_importance, draw2d=d)
|
59 |
|
60 |
+
# Draw molecule with color highlights
|
61 |
+
d.FinishDrawing()
|
62 |
+
|
63 |
+
# Save to PNG file with high quality
|
64 |
+
with open(f"{title}.png", "wb") as png_file:
|
65 |
+
png_file.write(d.GetDrawingText())
|
66 |
+
|
67 |
+
return None
|
68 |
+
|
69 |
model_checkpoint = "FartLabs/FART_Augmented"
|
70 |
classifier = pipeline("text-classification", model=model_checkpoint, top_k=None)
|
71 |
|
72 |
+
def process_smiles(smiles, compute_explanation):
|
73 |
# Validate and canonicalize SMILES
|
74 |
mol = Chem.MolFromSmiles(smiles)
|
75 |
if mol is None:
|
|
|
80 |
predictions = classifier(canonical_smiles)
|
81 |
|
82 |
# Generate molecule image
|
83 |
+
if compute_explanation:
|
84 |
+
img_path = "molecule"
|
85 |
+
filepath= "molecule.png"
|
86 |
+
save_high_quality_png(smiles, img_path)
|
87 |
+
else:
|
88 |
+
filepath = "molecule.png"
|
89 |
+
img = Draw.MolToImage(mol)
|
90 |
+
img.save(filepath)
|
91 |
|
92 |
# Convert predictions to a friendly format
|
93 |
prediction_dict = {pred["label"]: pred["score"] for pred in predictions[0]}
|
|
|
96 |
|
97 |
iface = gr.Interface(
|
98 |
fn=process_smiles,
|
99 |
+
inputs=[
|
100 |
+
gr.Textbox(label="Input SMILES", value="O1[C@H](CO)[C@@H](O)[C@H](O)[C@@H](O)[C@H]1O[C@@]2(O[C@@H]([C@@H](O)[C@@H]2O)CO)CO"),
|
101 |
+
gr.Checkbox(label="Compute Explanation (Takes 60s)", value=False),
|
102 |
+
],
|
103 |
outputs=[
|
104 |
gr.Label(num_top_classes=3, label="Classification Probabilities"),
|
105 |
gr.Image(type="filepath", label="Molecule Image"),
|