Habiba A. Elbehairy
commited on
Commit
·
1306f0a
1
Parent(s):
b4fe073
App
Browse files- Dockerfile +18 -0
- app.py +250 -0
- model_definition.py +33 -0
- requirements.txt +6 -0
Dockerfile
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Read the doc: https://huggingface.co/docs/hub/spaces-sdks-docker
|
2 |
+
# you will also find guides on how best to write your Dockerfile
|
3 |
+
|
4 |
+
FROM python:3.9
|
5 |
+
|
6 |
+
RUN useradd -m -u 1000 user
|
7 |
+
USER user
|
8 |
+
ENV PATH="/home/user/.local/bin:$PATH"
|
9 |
+
|
10 |
+
WORKDIR /app
|
11 |
+
|
12 |
+
COPY --chown=user ./requirements.txt requirements.txt
|
13 |
+
RUN pip install --no-cache-dir --upgrade -r requirements.txt
|
14 |
+
|
15 |
+
COPY --chown=user . /app
|
16 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
17 |
+
|
18 |
+
|
app.py
ADDED
@@ -0,0 +1,250 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import time
|
3 |
+
import logging
|
4 |
+
import torch
|
5 |
+
import torch.nn.functional as F
|
6 |
+
from fastapi import FastAPI, HTTPException
|
7 |
+
from fastapi.middleware.cors import CORSMiddleware
|
8 |
+
from pydantic import BaseModel
|
9 |
+
from transformers import AutoTokenizer, AutoConfig
|
10 |
+
from model_definition import MultitaskCodeSimilarityModel
|
11 |
+
from typing import List
|
12 |
+
import uvicorn
|
13 |
+
from datetime import datetime
|
14 |
+
|
15 |
+
# Set up logging
|
16 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
17 |
+
logger = logging.getLogger(__name__)
|
18 |
+
|
19 |
+
# System information - Updated with the provided values
|
20 |
+
DEPLOYMENT_DATE = "2025-06-10 15:11:04" # Updated timestamp
|
21 |
+
DEPLOYED_BY = "Fastest"
|
22 |
+
|
23 |
+
# Get device
|
24 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
25 |
+
logger.info(f"Using device: {device}")
|
26 |
+
|
27 |
+
# Your Hugging Face model repository
|
28 |
+
REPO_ID = "FastestAI/Redundant_Model"
|
29 |
+
|
30 |
+
# Initialize FastAPI app
|
31 |
+
app = FastAPI(
|
32 |
+
title="Test Similarity Analyzer API",
|
33 |
+
description="API for analyzing similarity between test cases. Deployed by " + DEPLOYED_BY,
|
34 |
+
version="1.0.0",
|
35 |
+
docs_url="/",
|
36 |
+
)
|
37 |
+
|
38 |
+
# Add CORS middleware to allow cross-origin requests
|
39 |
+
app.add_middleware(
|
40 |
+
CORSMiddleware,
|
41 |
+
allow_origins=["*"],
|
42 |
+
allow_credentials=True,
|
43 |
+
allow_methods=["*"],
|
44 |
+
allow_headers=["*"],
|
45 |
+
)
|
46 |
+
|
47 |
+
# Define label to class mapping with CORRECT NUMBERING (1, 2, 3 instead of 0, 1, 2)
|
48 |
+
label_to_class = {1: "Duplicate", 2: "Redundant", 3: "Distinct"}
|
49 |
+
|
50 |
+
# Model output to API label mapping (if your model outputs 0, 1, 2 but we want 1, 2, 3)
|
51 |
+
model_to_api_label = {0: 1, 1: 2, 2: 3}
|
52 |
+
|
53 |
+
# Define input models for API
|
54 |
+
class SourceCode(BaseModel):
|
55 |
+
class_name: str
|
56 |
+
code: str
|
57 |
+
|
58 |
+
class TestCase(BaseModel):
|
59 |
+
id: str
|
60 |
+
test_fixture: str
|
61 |
+
name: str
|
62 |
+
code: str
|
63 |
+
target_class: str
|
64 |
+
target_method: List[str]
|
65 |
+
|
66 |
+
class SimilarityInput(BaseModel):
|
67 |
+
pair_id: str
|
68 |
+
source_code: SourceCode
|
69 |
+
test_case_1: TestCase
|
70 |
+
test_case_2: TestCase
|
71 |
+
|
72 |
+
# Global variables for model and tokenizer
|
73 |
+
model = None
|
74 |
+
tokenizer = None
|
75 |
+
|
76 |
+
# Load model and tokenizer on startup
|
77 |
+
@app.on_event("startup")
|
78 |
+
async def startup_event():
|
79 |
+
global model, tokenizer
|
80 |
+
try:
|
81 |
+
logger.info(f"Loading model and tokenizer from {REPO_ID}...")
|
82 |
+
|
83 |
+
# Load tokenizer directly from Hugging Face
|
84 |
+
tokenizer = AutoTokenizer.from_pretrained(REPO_ID)
|
85 |
+
|
86 |
+
# Load config from Hugging Face
|
87 |
+
config = AutoConfig.from_pretrained(REPO_ID)
|
88 |
+
|
89 |
+
# Create model instance using imported MultitaskCodeSimilarityModel class
|
90 |
+
model = MultitaskCodeSimilarityModel(config, tokenizer)
|
91 |
+
|
92 |
+
# Load weights directly from Hugging Face
|
93 |
+
state_dict = torch.hub.load_state_dict_from_url(
|
94 |
+
f"https://huggingface.co/{REPO_ID}/resolve/main/pytorch_model.bin",
|
95 |
+
map_location=device,
|
96 |
+
check_hash=False
|
97 |
+
)
|
98 |
+
model.load_state_dict(state_dict)
|
99 |
+
|
100 |
+
# Move model to device and set to evaluation mode
|
101 |
+
model.to(device)
|
102 |
+
model.eval()
|
103 |
+
|
104 |
+
logger.info("Model and tokenizer loaded successfully!")
|
105 |
+
except Exception as e:
|
106 |
+
logger.error(f"Error loading model: {e}")
|
107 |
+
import traceback
|
108 |
+
logger.error(traceback.format_exc())
|
109 |
+
model = None
|
110 |
+
tokenizer = None
|
111 |
+
|
112 |
+
@app.get("/health", tags=["Health"])
|
113 |
+
async def health_check():
|
114 |
+
"""Health check endpoint that also returns deployment information"""
|
115 |
+
if model is None or tokenizer is None:
|
116 |
+
return {
|
117 |
+
"status": "error",
|
118 |
+
"message": "Model or tokenizer not loaded",
|
119 |
+
"deployment_date": DEPLOYMENT_DATE,
|
120 |
+
"deployed_by": DEPLOYED_BY
|
121 |
+
}
|
122 |
+
|
123 |
+
return {
|
124 |
+
"status": "ok",
|
125 |
+
"model": REPO_ID,
|
126 |
+
"device": str(device),
|
127 |
+
"deployment_date": DEPLOYMENT_DATE,
|
128 |
+
"deployed_by": DEPLOYED_BY,
|
129 |
+
"current_time": datetime.utcnow().strftime("%Y-%m-%d %H:%M:%S")
|
130 |
+
}
|
131 |
+
|
132 |
+
@app.post("/predict")
|
133 |
+
async def predict(data: SimilarityInput):
|
134 |
+
"""
|
135 |
+
Predict similarity class between two test cases for a given source class.
|
136 |
+
|
137 |
+
Input schema follows the specified format with source_code, test_case_1, and test_case_2.
|
138 |
+
Uses heuristics to detect class and method differences before using the model.
|
139 |
+
"""
|
140 |
+
if model is None:
|
141 |
+
raise HTTPException(status_code=500, detail="Model not loaded correctly")
|
142 |
+
|
143 |
+
try:
|
144 |
+
# Apply heuristics for method and class differences
|
145 |
+
class_1 = data.test_case_1.target_class
|
146 |
+
class_2 = data.test_case_2.target_class
|
147 |
+
method_1 = data.test_case_1.target_method
|
148 |
+
method_2 = data.test_case_2.target_method
|
149 |
+
|
150 |
+
# Check if we can determine similarity without using the model
|
151 |
+
if class_1 and class_2 and class_1 != class_2:
|
152 |
+
logger.info(f"Heuristic detection: Different target classes - Distinct")
|
153 |
+
api_prediction = 3 # Distinct
|
154 |
+
probs = [0.0, 0.0, 1.0] # 100% confidence in Distinct
|
155 |
+
elif method_1 and method_2 and not set(method_1).intersection(set(method_2)):
|
156 |
+
logger.info(f"Heuristic detection: Different target methods - Distinct")
|
157 |
+
api_prediction = 3 # Distinct
|
158 |
+
probs = [0.0, 0.0, 1.0] # 100% confidence in Distinct
|
159 |
+
else:
|
160 |
+
# No clear heuristic match, use the model
|
161 |
+
# Format input to match training format
|
162 |
+
combined_input = (
|
163 |
+
f"SOURCE CODE: {data.source_code.code}\n"
|
164 |
+
f"TEST 1: {data.test_case_1.code}\n"
|
165 |
+
f"TEST 2: {data.test_case_2.code}"
|
166 |
+
)
|
167 |
+
|
168 |
+
# Tokenize input
|
169 |
+
inputs = tokenizer(combined_input, return_tensors="pt", padding=True, truncation=True, max_length=512).to(device)
|
170 |
+
|
171 |
+
# THIS IS WHERE THE MODEL IS CALLED
|
172 |
+
with torch.no_grad():
|
173 |
+
# Our custom model
|
174 |
+
logits, _ = model(
|
175 |
+
input_ids=inputs["input_ids"],
|
176 |
+
attention_mask=inputs["attention_mask"]
|
177 |
+
)
|
178 |
+
|
179 |
+
# Process results
|
180 |
+
probs = F.softmax(logits, dim=-1)[0].cpu().tolist()
|
181 |
+
model_prediction = torch.argmax(logits, dim=-1).item()
|
182 |
+
|
183 |
+
# Convert model prediction (0,1,2) to API prediction (1,2,3)
|
184 |
+
api_prediction = model_to_api_label[model_prediction]
|
185 |
+
logger.info(f"Model prediction: {label_to_class[api_prediction]}")
|
186 |
+
|
187 |
+
# Map prediction to class name
|
188 |
+
classification = label_to_class.get(api_prediction, "Unknown")
|
189 |
+
|
190 |
+
return {
|
191 |
+
"pair_id": data.pair_id,
|
192 |
+
"test_case_1_name": data.test_case_1.name,
|
193 |
+
"test_case_2_name": data.test_case_2.name,
|
194 |
+
"similarity": {
|
195 |
+
"score": api_prediction,
|
196 |
+
"classification": classification,
|
197 |
+
},
|
198 |
+
"probabilities": probs
|
199 |
+
}
|
200 |
+
|
201 |
+
except Exception as e:
|
202 |
+
import traceback
|
203 |
+
error_trace = traceback.format_exc()
|
204 |
+
logger.error(f"Prediction error: {str(e)}")
|
205 |
+
logger.error(error_trace)
|
206 |
+
raise HTTPException(status_code=500, detail=f"Prediction error: {str(e)}")
|
207 |
+
|
208 |
+
# Example endpoint
|
209 |
+
@app.get("/example", response_model=SimilarityInput, tags=["Examples"])
|
210 |
+
async def get_example():
|
211 |
+
"""Get an example input to test the API"""
|
212 |
+
return SimilarityInput(
|
213 |
+
pair_id="example-1",
|
214 |
+
source_code=SourceCode(
|
215 |
+
class_name="Calculator",
|
216 |
+
code="class Calculator {\n public int add(int a, int b) {\n return a + b;\n }\n}"
|
217 |
+
),
|
218 |
+
test_case_1=TestCase(
|
219 |
+
id="test-1",
|
220 |
+
test_fixture="CalculatorTest",
|
221 |
+
name="testAddsTwoPositiveNumbers",
|
222 |
+
code="TEST(CalculatorTest, AddsTwoPositiveNumbers) {\n Calculator calc;\n EXPECT_EQ(5, calc.add(2, 3));\n}",
|
223 |
+
target_class="Calculator",
|
224 |
+
target_method=["add"]
|
225 |
+
),
|
226 |
+
test_case_2=TestCase(
|
227 |
+
id="test-2",
|
228 |
+
test_fixture="CalculatorTest",
|
229 |
+
name="testAddsTwoPositiveIntegers",
|
230 |
+
code="TEST(CalculatorTest, AddsTwoPositiveIntegers) {\n Calculator calc;\n EXPECT_EQ(5, calc.add(2, 3));\n}",
|
231 |
+
target_class="Calculator",
|
232 |
+
target_method=["add"]
|
233 |
+
)
|
234 |
+
)
|
235 |
+
|
236 |
+
@app.get("/", tags=["Root"])
|
237 |
+
async def root():
|
238 |
+
"""
|
239 |
+
Redirect to the API documentation.
|
240 |
+
This is a convenience endpoint that redirects to the auto-generated docs.
|
241 |
+
"""
|
242 |
+
return {
|
243 |
+
"message": "Test Similarity Analyzer API",
|
244 |
+
"documentation": "/docs",
|
245 |
+
"deployment_date": DEPLOYMENT_DATE,
|
246 |
+
"deployed_by": DEPLOYED_BY
|
247 |
+
}
|
248 |
+
|
249 |
+
if __name__ == "__main__":
|
250 |
+
uvicorn.run("app:app", host="0.0.0.0", port=7860, reload=True)
|
model_definition.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from transformers import AutoModel
|
4 |
+
|
5 |
+
class MultitaskCodeSimilarityModel(nn.Module):
|
6 |
+
def __init__(self, config, tokenizer):
|
7 |
+
super().__init__()
|
8 |
+
self.config = config
|
9 |
+
self.tokenizer = tokenizer
|
10 |
+
self.encoder = AutoModel.from_config(config)
|
11 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
12 |
+
|
13 |
+
# For explanation generation
|
14 |
+
self.decoder_embedding = nn.Linear(config.hidden_size, config.hidden_size)
|
15 |
+
self.decoder = nn.GRU(
|
16 |
+
input_size=config.hidden_size,
|
17 |
+
hidden_size=config.hidden_size,
|
18 |
+
batch_first=True
|
19 |
+
)
|
20 |
+
self.explanation_head = nn.Linear(config.hidden_size, len(tokenizer))
|
21 |
+
|
22 |
+
def forward(self, input_ids, attention_mask, explanation_ids=None, explanation_mask=None):
|
23 |
+
outputs = self.encoder(input_ids=input_ids, attention_mask=attention_mask)
|
24 |
+
pooled = outputs.last_hidden_state[:, 0]
|
25 |
+
logits = self.classifier(pooled)
|
26 |
+
|
27 |
+
explanation_logits = None
|
28 |
+
if explanation_ids is not None:
|
29 |
+
decoder_input = self.decoder_embedding(pooled).unsqueeze(1).expand(-1, explanation_ids.size(1), -1)
|
30 |
+
decoder_outputs, _ = self.decoder(decoder_input)
|
31 |
+
explanation_logits = self.explanation_head(decoder_outputs)
|
32 |
+
|
33 |
+
return logits, explanation_logits
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch>=1.10.0
|
2 |
+
transformers>=4.18.0
|
3 |
+
fastapi>=0.68.0
|
4 |
+
uvicorn>=0.15.0
|
5 |
+
pydantic>=1.8.0
|
6 |
+
numpy>=1.20.0
|