import os import logging import torch import torch.nn.functional as F from fastapi import FastAPI, HTTPException from fastapi.middleware.cors import CORSMiddleware from pydantic import BaseModel from typing import List import uvicorn from datetime import datetime from transformers import AutoTokenizer, AutoModel import requests import re import tempfile # Set up logging logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s', handlers=[logging.StreamHandler()] ) logger = logging.getLogger(__name__) # System information - with your current values DEPLOYMENT_DATE = "2025-06-22 22:15:13" DEPLOYED_BY = "FASTESTAI" # Get device device = torch.device("cuda" if torch.cuda.is_available() else "cpu") logger.info(f"Using device: {device}") # HuggingFace model repository path just for weights file REPO_ID = "FastestAI/Redundant_Model" MODEL_WEIGHTS_URL = f"https://huggingface.co/{REPO_ID}/resolve/main/pytorch_model.bin" # Initialize FastAPI app app = FastAPI( title="Test Similarity Analyzer API", description="API for analyzing similarity between test cases. Deployed by " + DEPLOYED_BY, version="1.0.0", docs_url="/", ) # Add CORS middleware app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) # Define label to class mapping label_to_class = {0: "Duplicate", 1: "Redundant", 2: "Distinct"} # Define input models for API class SourceCode(BaseModel): class_name: str code: str class TestCase(BaseModel): id: str test_fixture: str name: str code: str target_class: str target_method: List[str] class SimilarityInput(BaseModel): pair_id: str source_code: SourceCode test_case_1: TestCase test_case_2: TestCase # Define the model class class CodeSimilarityClassifier(torch.nn.Module): def __init__(self, model_name="microsoft/codebert-base", num_labels=3): super().__init__() self.encoder = AutoModel.from_pretrained(model_name) self.dropout = torch.nn.Dropout(0.1) # Create a more powerful classification head hidden_size = self.encoder.config.hidden_size self.classifier = torch.nn.Sequential( torch.nn.Linear(hidden_size, hidden_size), torch.nn.LayerNorm(hidden_size), torch.nn.GELU(), torch.nn.Dropout(0.1), torch.nn.Linear(hidden_size, 512), torch.nn.LayerNorm(512), torch.nn.GELU(), torch.nn.Dropout(0.1), torch.nn.Linear(512, num_labels) ) def forward(self, input_ids, attention_mask): outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, return_dict=True ) pooled_output = outputs.pooler_output logits = self.classifier(pooled_output) return logits def extract_features(source_code, test_code_1, test_code_2): """Extract specific features to help the model identify similarities""" # Extract test fixtures fixture1 = re.search(r'TEST(?:_F)?\s*\(\s*(\w+)', test_code_1) fixture1 = fixture1.group(1) if fixture1 else "" fixture2 = re.search(r'TEST(?:_F)?\s*\(\s*(\w+)', test_code_2) fixture2 = fixture2.group(1) if fixture2 else "" # Extract test names name1 = re.search(r'TEST(?:_F)?\s*\(\s*\w+\s*,\s*(\w+)', test_code_1) name1 = name1.group(1) if name1 else "" name2 = re.search(r'TEST(?:_F)?\s*\(\s*\w+\s*,\s*(\w+)', test_code_2) name2 = name2.group(1) if name2 else "" # Extract assertions assertions1 = re.findall(r'(EXPECT_|ASSERT_)(\w+)', test_code_1) assertions2 = re.findall(r'(EXPECT_|ASSERT_)(\w+)', test_code_2) # Extract function/method calls calls1 = re.findall(r'(\w+)\s*\(', test_code_1) calls2 = re.findall(r'(\w+)\s*\(', test_code_2) # Create explicit feature section same_fixture = "SAME_FIXTURE" if fixture1 == fixture2 else "DIFFERENT_FIXTURE" common_assertions = set([a[0] + a[1] for a in assertions1]).intersection(set([a[0] + a[1] for a in assertions2])) common_calls = set(calls1).intersection(set(calls2)) # Calculate assertion ratio with safety check for zero assertion_ratio = 0 if assertions1 and assertions2: total_assertions = len(assertions1) + len(assertions2) if total_assertions > 0: assertion_ratio = len(common_assertions) / total_assertions features = ( f"METADATA: {same_fixture} | " f"FIXTURE1: {fixture1} | FIXTURE2: {fixture2} | " f"NAME1: {name1} | NAME2: {name2} | " f"COMMON_ASSERTIONS: {len(common_assertions)} | " f"COMMON_CALLS: {len(common_calls)} | " f"ASSERTION_RATIO: {assertion_ratio}" ) return features # Global variables for model and tokenizer tokenizer = None model = None def download_model_weights(url, save_path): """Download model weights from URL to a local file""" try: logger.info(f"Downloading model weights from {url}...") response = requests.get(url, stream=True) if response.status_code != 200: logger.error(f"Failed to download: HTTP {response.status_code}") return False with open(save_path, 'wb') as f: for chunk in response.iter_content(chunk_size=8192): if chunk: f.write(chunk) logger.info(f"Successfully downloaded model weights to {save_path}") return True except Exception as e: logger.error(f"Error downloading model weights: {e}") return False # Load model and tokenizer on startup @app.on_event("startup") async def startup_event(): global tokenizer, model try: logger.info("=== Starting model loading process ===") # Step 1: Load the tokenizer from the base model logger.info(f"Loading tokenizer from microsoft/codebert-base...") try: tokenizer = AutoTokenizer.from_pretrained("microsoft/codebert-base") logger.info("✅ Base tokenizer loaded successfully") except Exception as e: logger.error(f"❌ Failed to load tokenizer: {str(e)}") raise # Step 2: Create model with base architecture logger.info("Creating model architecture...") try: # Initialize with base CodeBERT model = CodeSimilarityClassifier(model_name="microsoft/codebert-base") logger.info("✅ Model architecture created successfully") except Exception as e: logger.error(f"❌ Failed to create model architecture: {str(e)}") raise # Step 3: Download and load weights model_path = "pytorch_model.bin" # First check if the file already exists if not os.path.exists(model_path): # Try downloading if not download_model_weights(MODEL_WEIGHTS_URL, model_path): logger.error("❌ Failed to download model weights") raise RuntimeError("Failed to download model weights") # Try to load the model weights try: # Check if the weights are a state dict or the whole model logger.info(f"Loading weights from {model_path}...") checkpoint = torch.load(model_path, map_location=device) if isinstance(checkpoint, dict): # If it's a state dict directly if "state_dict" in checkpoint: logger.info("Loading from checkpoint['state_dict']") model.load_state_dict(checkpoint["state_dict"]) elif "model_state_dict" in checkpoint: logger.info("Loading from checkpoint['model_state_dict']") model.load_state_dict(checkpoint["model_state_dict"]) else: logger.info("Loading from checkpoint directly") model.load_state_dict(checkpoint) else: logger.error("❌ Unsupported model format") raise RuntimeError("Unsupported model format") logger.info("✅ Model weights loaded successfully") except Exception as e: logger.error(f"❌ Error loading model weights: {str(e)}") raise # Move model to device and set to evaluation mode model.to(device) model.eval() logger.info(f"✅ Model moved to {device} and set to evaluation mode") logger.info("=== Model loading process complete ===") except Exception as e: logger.error(f"❌ CRITICAL ERROR in startup: {str(e)}") import traceback logger.error(traceback.format_exc()) model = None tokenizer = None @app.get("/health") async def health_check(): """Health check endpoint that also returns deployment information""" model_status = model is not None tokenizer_status = tokenizer is not None status = "ok" if (model_status and tokenizer_status) else "error" return { "status": status, "model_loaded": model_status, "tokenizer_loaded": tokenizer_status, "model": REPO_ID, "device": str(device), "deployment_date": DEPLOYMENT_DATE, "deployed_by": DEPLOYED_BY, "current_time": datetime.utcnow().strftime("%Y-%m-%d %H:%M:%S") } @app.post("/predict") async def predict(data: SimilarityInput): """ Predict similarity class between two test cases for a given source class. """ if model is None or tokenizer is None: raise HTTPException(status_code=500, detail="Model not loaded correctly") try: # Apply heuristics for method and class differences class_1 = data.test_case_1.target_class class_2 = data.test_case_2.target_class method_1 = data.test_case_1.target_method method_2 = data.test_case_2.target_method # Check if we can determine similarity without using the model if class_1 and class_2 and class_1 != class_2: logger.info(f"Heuristic detection: Different target classes - Distinct") model_prediction = 2 # Distinct probs = [0.0, 0.0, 1.0] # 100% confidence in Distinct elif method_1 and method_2 and not set(method_1).intersection(set(method_2)): logger.info(f"Heuristic detection: Different target methods - Distinct") model_prediction = 2 # Distinct probs = [0.0, 0.0, 1.0] # 100% confidence in Distinct else: # No clear heuristic match, use the model # Extract features to help with classification features = extract_features(data.source_code.code, data.test_case_1.code, data.test_case_2.code) # Format the input text with clear section markers as done during training formatted_text = ( f"{features}\n\n" f"SOURCE CODE:\n{data.source_code.code.strip()}\n\n" f"TEST CASE 1:\n{data.test_case_1.code.strip()}\n\n" f"TEST CASE 2:\n{data.test_case_2.code.strip()}" ) # Tokenize input inputs = tokenizer( formatted_text, return_tensors="pt", padding="max_length", truncation=True, max_length=512 ).to(device) # Model inference with torch.no_grad(): logits = model( input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"] ) # Process results probs = F.softmax(logits, dim=-1)[0].cpu().tolist() model_prediction = torch.argmax(logits, dim=-1).item() logger.info(f"Model prediction: {label_to_class[model_prediction]}") # Map prediction to class name classification = label_to_class.get(model_prediction, "Unknown") # For API compatibility, map the model outputs (0,1,2) to API scores (1,2,3) api_score = model_prediction + 1 return { "pair_id": data.pair_id, "test_case_1_name": data.test_case_1.name, "test_case_2_name": data.test_case_2.name, "similarity": { "score": api_score, "classification": classification, }, "probabilities": probs } except Exception as e: import traceback error_trace = traceback.format_exc() logger.error(f"Prediction error: {str(e)}") logger.error(error_trace) raise HTTPException(status_code=500, detail=f"Prediction error: {str(e)}") # Root and example endpoints @app.get("/") async def root(): return { "message": "Test Similarity Analyzer API", "documentation": "/docs", "deployment_date": DEPLOYMENT_DATE, "deployed_by": DEPLOYED_BY } @app.get("/example", response_model=SimilarityInput) async def get_example(): """Get an example input to test the API""" return SimilarityInput( pair_id="example-1", source_code=SourceCode( class_name="Calculator", code="class Calculator {\n public int add(int a, int b) {\n return a + b;\n }\n}" ), test_case_1=TestCase( id="test-1", test_fixture="CalculatorTest", name="testAddsTwoPositiveNumbers", code="TEST(CalculatorTest, AddsTwoPositiveNumbers) {\n Calculator calc;\n EXPECT_EQ(5, calc.add(2, 3));\n}", target_class="Calculator", target_method=["add"] ), test_case_2=TestCase( id="test-2", test_fixture="CalculatorTest", name="testAddsTwoPositiveIntegers", code="TEST(CalculatorTest, AddsTwoPositiveIntegers) {\n Calculator calc;\n EXPECT_EQ(5, calc.add(2, 3));\n}", target_class="Calculator", target_method=["add"] ) ) if __name__ == "__main__": uvicorn.run("app:app", host="0.0.0.0", port=7860, reload=True)