Spaces:
Sleeping
Sleeping
chore: Update app.py with improved Gradio interface for Hot Dog Classifier
Browse files
app.py
CHANGED
@@ -1,31 +1,18 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline
|
3 |
|
4 |
-
|
5 |
-
pipe = pipeline("visual-question-answering", model="openbmb/MiniCPM-Llama3-V-2_5", trust_remote_code=True)
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
answer = gr.Textbox(label="Answer", show_label=True, show_copy_button=True)
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
result = pipe(image, question)
|
18 |
-
return result[0]['answer']
|
19 |
-
|
20 |
-
# Create the Gradio interface
|
21 |
-
demo = gr.Interface(
|
22 |
-
fn=solve_sudoku,
|
23 |
-
inputs=[image, question],
|
24 |
-
outputs=answer,
|
25 |
-
title=title,
|
26 |
-
description=description,
|
27 |
-
theme="compact",
|
28 |
)
|
29 |
|
30 |
-
|
31 |
-
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline
|
3 |
|
4 |
+
pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")
|
|
|
5 |
|
6 |
+
def predict(input_img):
|
7 |
+
predictions = pipeline(input_img)
|
8 |
+
return input_img, {p["label"]: p["score"] for p in predictions}
|
|
|
9 |
|
10 |
+
gradio_app = gr.Interface(
|
11 |
+
predict,
|
12 |
+
inputs=gr.Image(label="Select hot dog candidate", sources=['upload', 'webcam'], type="pil"),
|
13 |
+
outputs=[gr.Image(label="Processed Image"), gr.Label(label="Result", num_top_classes=2)],
|
14 |
+
title="Hot Dog? Or Not?",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
)
|
16 |
|
17 |
+
if __name__ == "__main__":
|
18 |
+
gradio_app.launch()
|