Faustrix commited on
Commit
3d91c52
·
1 Parent(s): b5e31dc

chore: Update app.py with improved Gradio interface for Hot Dog Classifier

Browse files
Files changed (1) hide show
  1. app.py +11 -24
app.py CHANGED
@@ -1,31 +1,18 @@
1
  import gradio as gr
2
  from transformers import pipeline
3
 
4
- # Initialize the pipeline
5
- pipe = pipeline("visual-question-answering", model="openbmb/MiniCPM-Llama3-V-2_5", trust_remote_code=True)
6
 
7
- # Define the Gradio components
8
- image = gr.Image(type="pil", label="Image")
9
- question = gr.Textbox(value="Using the standard 9x9 sudoku format, solve the sudoku puzzle in the image correctly.", label="Question")
10
- answer = gr.Textbox(label="Answer", show_label=True, show_copy_button=True)
11
 
12
- title = "Sudoku Solver by FG"
13
- description = "Sudoku Solver using MiniCPM-Llama3-V-2_5"
14
-
15
- # Define the function for solving Sudoku
16
- def solve_sudoku(image, question):
17
- result = pipe(image, question)
18
- return result[0]['answer']
19
-
20
- # Create the Gradio interface
21
- demo = gr.Interface(
22
- fn=solve_sudoku,
23
- inputs=[image, question],
24
- outputs=answer,
25
- title=title,
26
- description=description,
27
- theme="compact",
28
  )
29
 
30
- # Launch the interface
31
- demo.launch(share=True)
 
1
  import gradio as gr
2
  from transformers import pipeline
3
 
4
+ pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")
 
5
 
6
+ def predict(input_img):
7
+ predictions = pipeline(input_img)
8
+ return input_img, {p["label"]: p["score"] for p in predictions}
 
9
 
10
+ gradio_app = gr.Interface(
11
+ predict,
12
+ inputs=gr.Image(label="Select hot dog candidate", sources=['upload', 'webcam'], type="pil"),
13
+ outputs=[gr.Image(label="Processed Image"), gr.Label(label="Result", num_top_classes=2)],
14
+ title="Hot Dog? Or Not?",
 
 
 
 
 
 
 
 
 
 
 
15
  )
16
 
17
+ if __name__ == "__main__":
18
+ gradio_app.launch()