File size: 6,247 Bytes
2e6aaf3
 
 
 
 
 
 
 
 
4c2c839
 
 
 
 
 
2e6aaf3
 
 
 
4c2c839
 
 
 
 
2e6aaf3
4c2c839
 
2e6aaf3
4c2c839
 
 
 
 
 
 
 
 
2e6aaf3
4c2c839
2e6aaf3
 
 
 
 
 
 
4c2c839
 
 
 
 
2e6aaf3
4c2c839
 
 
 
 
 
 
 
 
 
2e6aaf3
4c2c839
 
 
 
 
 
 
 
 
2e6aaf3
4c2c839
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad369cf
4c2c839
ad369cf
4c2c839
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e6aaf3
4c2c839
 
 
ad369cf
4c2c839
ad369cf
4c2c839
ad369cf
4c2c839
ad369cf
4c2c839
 
 
 
49a2361
d8073a9
4c2c839
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
# -*- coding: utf-8 -*-
"""app.ipynb

Automatically generated by Colab.

Original file is located at
    https://colab.research.google.com/drive/1sjyLFLqBccpUzaUi4eyyP3NYE3gDtHfs
"""

import streamlit as st
from streamlit_option_menu import option_menu
import tensorflow as tf
from tensorflow import keras
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import transforms
from PIL import Image
import os
import time
from efficientnet_pytorch import EfficientNet
from fastai.vision.all import load_learner

# Set up environment variables for GPU handling
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'

# Cache to load models efficiently
@st.cache_resource
def load_skin_model():
    model = MelanomaModel(out_size=9)
    model_path = "multi_weight.pth"
    checkpoint = torch.load(model_path, map_location=torch.device('cpu'), weights_only=False)
    model.load_state_dict(checkpoint["model_state_dict"])
    model.eval()
    return model

# Transform for skin lesion images
transform = transforms.Compose([
    transforms.Resize(256),
    transforms.CenterCrop(224),
    transforms.ToTensor(),
    transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])

# Diagnosis map for skin disease model
DIAGNOSIS_MAP = {
    0: 'Melanoma', 1: 'Melanocytic nevus', 2: 'Basal cell carcinoma', 3: 'Actinic keratosis', 
    4: 'Benign keratosis', 5: 'Dermatofibroma', 6: 'Vascular lesion', 7: 'Squamous cell carcinoma', 8: 'Unknown'
}

# Model for skin lesion classification
class MelanomaModel(nn.Module):
    def __init__(self, out_size, dropout_prob=0.5):
        super(MelanomaModel, self).__init__()
        self.efficient_net = EfficientNet.from_pretrained('efficientnet-b0')
        self.efficient_net._fc = nn.Identity()
        self.fc1 = nn.Linear(1280, 512)
        self.fc2 = nn.Linear(512, 256)
        self.fc3 = nn.Linear(256, out_size)
        self.dropout = nn.Dropout(dropout_prob)

    def forward(self, x):
        x = self.efficient_net(x)
        x = x.view(x.size(0), -1)
        x = F.relu(self.fc1(x))
        x = self.dropout(x)
        x = F.relu(self.fc2(x))
        x = self.dropout(x)
        x = self.fc3(x)
        return x

# Alzheimer's Prediction
@st.cache_resource
def load_alzheimer_model():
    return keras.models.load_model('alzheimer_99.5.h5')

# Brain Tumor Prediction
@st.cache_resource
def load_brain_tumor_model(classes):
    if classes == '44 Classes':
        return keras.models.load_model('44class_96.5.h5')
    elif classes == '17 Classes':
        return keras.models.load_model('17class_98.1.h5')
    elif classes == '15 Classes':
        return keras.models.load_model('15class_99.8.h5')
    else:  # Default 2 classes
        return keras.models.load_model('2calss_lagre_dataset_99.1.h5')

# Prediction for Skin Disease
def predict_skin_lesion(img: Image.Image, model: nn.Module):
    img_tensor = transform(img).unsqueeze(0)
    with torch.no_grad():
        outputs = model(img_tensor)
        probs = F.softmax(outputs, dim=1)
        top_probs, top_idxs = torch.topk(probs, 3, dim=1)
    predictions = [(DIAGNOSIS_MAP.get(idx.item(), "Unknown"), prob.item() * 100) for prob, idx in zip(top_probs[0], top_idxs[0])]
    return predictions

# Prediction for Brain Tumor and Alzheimer
def predict(img_path, model, result_classes):
    img = tf.keras.utils.load_img(img_path, target_size=(224, 224))
    img_array = np.array(img).reshape(-1, 224, 224, 3)
    pred = model.predict(img_array)
    return result_classes[np.argmax(pred, axis=1)[0]]

# Sidebar for Disease Categories
def spr_sidebar():
    menu = option_menu(
        menu_title="Navigation",
        options=["Brain Tumor", "Alzheimer", "Skin Disease", "Eye Disease", "About"],
        icons=["house", "brain", "microscope", "eye", "info-square"],
        menu_icon="cast",
        default_index=0,
        orientation="horizontal"
    )
    return menu


# Home Page Content
def home_page(selected_category):  # Accept selected_category as a parameter
    st.title("Disease Detection Web App")
    
    uploaded_file = st.file_uploader("Upload an image", type=["png", "jpg", "jpeg"])
    
    if uploaded_file is not None:
        st.image(uploaded_file, caption="Uploaded Image", use_column_width=True)

        if st.button("Classify"):
            if selected_category == "Brain Tumor":
                classes = st.selectbox("Select Number of Classes", ['44 Classes', '17 Classes', '15 Classes', '2 Classes'])
                model = load_brain_tumor_model(classes)
                result_classes = ['Astrocitoma', 'Carcinoma', 'Ependimoma', '_NORMAL', 'etc...']  # Define all the classes
                result = predict(uploaded_file, model, result_classes)
                st.success(f"Prediction: {result}")

            elif selected_category == "Alzheimer":
                model = load_alzheimer_model()
                result_classes = ['Mild_Demented', 'Moderate_Demented', 'Non_Demented']
                result = predict(uploaded_file, model, result_classes)
                st.success(f"Prediction: {result}")

            elif selected_category == "Skin Disease":
                model = load_skin_model()
                img = Image.open(uploaded_file)
                predictions = predict_skin_lesion(img, model)
                for idx, (label, confidence) in enumerate(predictions, 1):
                    st.write(f"{idx}. {label}: {confidence:.2f}%")

            elif selected_category == "Eye Disease":
                # Implement Eye Disease prediction (similar to others)
                pass

# Main Function to Run the App
def main():
    selected_category = spr_sidebar()
    
    if selected_category == "Brain Tumor":
        home_page(selected_category)  # Pass selected_category here
    elif selected_category == "Alzheimer":
        home_page(selected_category)  # Pass selected_category here
    elif selected_category == "Skin Disease":
        home_page(selected_category)  # Pass selected_category here
    elif selected_category == "Eye Disease":
        home_page(selected_category)  # Pass selected_category here
    elif selected_category == "About":
        about_page()

if __name__ == '__main__':
    main()