Spaces:
Sleeping
Sleeping
File size: 6,247 Bytes
2e6aaf3 4c2c839 2e6aaf3 4c2c839 2e6aaf3 4c2c839 2e6aaf3 4c2c839 2e6aaf3 4c2c839 2e6aaf3 4c2c839 2e6aaf3 4c2c839 2e6aaf3 4c2c839 2e6aaf3 4c2c839 ad369cf 4c2c839 ad369cf 4c2c839 2e6aaf3 4c2c839 ad369cf 4c2c839 ad369cf 4c2c839 ad369cf 4c2c839 ad369cf 4c2c839 49a2361 d8073a9 4c2c839 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
# -*- coding: utf-8 -*-
"""app.ipynb
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/1sjyLFLqBccpUzaUi4eyyP3NYE3gDtHfs
"""
import streamlit as st
from streamlit_option_menu import option_menu
import tensorflow as tf
from tensorflow import keras
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import transforms
from PIL import Image
import os
import time
from efficientnet_pytorch import EfficientNet
from fastai.vision.all import load_learner
# Set up environment variables for GPU handling
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
# Cache to load models efficiently
@st.cache_resource
def load_skin_model():
model = MelanomaModel(out_size=9)
model_path = "multi_weight.pth"
checkpoint = torch.load(model_path, map_location=torch.device('cpu'), weights_only=False)
model.load_state_dict(checkpoint["model_state_dict"])
model.eval()
return model
# Transform for skin lesion images
transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
# Diagnosis map for skin disease model
DIAGNOSIS_MAP = {
0: 'Melanoma', 1: 'Melanocytic nevus', 2: 'Basal cell carcinoma', 3: 'Actinic keratosis',
4: 'Benign keratosis', 5: 'Dermatofibroma', 6: 'Vascular lesion', 7: 'Squamous cell carcinoma', 8: 'Unknown'
}
# Model for skin lesion classification
class MelanomaModel(nn.Module):
def __init__(self, out_size, dropout_prob=0.5):
super(MelanomaModel, self).__init__()
self.efficient_net = EfficientNet.from_pretrained('efficientnet-b0')
self.efficient_net._fc = nn.Identity()
self.fc1 = nn.Linear(1280, 512)
self.fc2 = nn.Linear(512, 256)
self.fc3 = nn.Linear(256, out_size)
self.dropout = nn.Dropout(dropout_prob)
def forward(self, x):
x = self.efficient_net(x)
x = x.view(x.size(0), -1)
x = F.relu(self.fc1(x))
x = self.dropout(x)
x = F.relu(self.fc2(x))
x = self.dropout(x)
x = self.fc3(x)
return x
# Alzheimer's Prediction
@st.cache_resource
def load_alzheimer_model():
return keras.models.load_model('alzheimer_99.5.h5')
# Brain Tumor Prediction
@st.cache_resource
def load_brain_tumor_model(classes):
if classes == '44 Classes':
return keras.models.load_model('44class_96.5.h5')
elif classes == '17 Classes':
return keras.models.load_model('17class_98.1.h5')
elif classes == '15 Classes':
return keras.models.load_model('15class_99.8.h5')
else: # Default 2 classes
return keras.models.load_model('2calss_lagre_dataset_99.1.h5')
# Prediction for Skin Disease
def predict_skin_lesion(img: Image.Image, model: nn.Module):
img_tensor = transform(img).unsqueeze(0)
with torch.no_grad():
outputs = model(img_tensor)
probs = F.softmax(outputs, dim=1)
top_probs, top_idxs = torch.topk(probs, 3, dim=1)
predictions = [(DIAGNOSIS_MAP.get(idx.item(), "Unknown"), prob.item() * 100) for prob, idx in zip(top_probs[0], top_idxs[0])]
return predictions
# Prediction for Brain Tumor and Alzheimer
def predict(img_path, model, result_classes):
img = tf.keras.utils.load_img(img_path, target_size=(224, 224))
img_array = np.array(img).reshape(-1, 224, 224, 3)
pred = model.predict(img_array)
return result_classes[np.argmax(pred, axis=1)[0]]
# Sidebar for Disease Categories
def spr_sidebar():
menu = option_menu(
menu_title="Navigation",
options=["Brain Tumor", "Alzheimer", "Skin Disease", "Eye Disease", "About"],
icons=["house", "brain", "microscope", "eye", "info-square"],
menu_icon="cast",
default_index=0,
orientation="horizontal"
)
return menu
# Home Page Content
def home_page(selected_category): # Accept selected_category as a parameter
st.title("Disease Detection Web App")
uploaded_file = st.file_uploader("Upload an image", type=["png", "jpg", "jpeg"])
if uploaded_file is not None:
st.image(uploaded_file, caption="Uploaded Image", use_column_width=True)
if st.button("Classify"):
if selected_category == "Brain Tumor":
classes = st.selectbox("Select Number of Classes", ['44 Classes', '17 Classes', '15 Classes', '2 Classes'])
model = load_brain_tumor_model(classes)
result_classes = ['Astrocitoma', 'Carcinoma', 'Ependimoma', '_NORMAL', 'etc...'] # Define all the classes
result = predict(uploaded_file, model, result_classes)
st.success(f"Prediction: {result}")
elif selected_category == "Alzheimer":
model = load_alzheimer_model()
result_classes = ['Mild_Demented', 'Moderate_Demented', 'Non_Demented']
result = predict(uploaded_file, model, result_classes)
st.success(f"Prediction: {result}")
elif selected_category == "Skin Disease":
model = load_skin_model()
img = Image.open(uploaded_file)
predictions = predict_skin_lesion(img, model)
for idx, (label, confidence) in enumerate(predictions, 1):
st.write(f"{idx}. {label}: {confidence:.2f}%")
elif selected_category == "Eye Disease":
# Implement Eye Disease prediction (similar to others)
pass
# Main Function to Run the App
def main():
selected_category = spr_sidebar()
if selected_category == "Brain Tumor":
home_page(selected_category) # Pass selected_category here
elif selected_category == "Alzheimer":
home_page(selected_category) # Pass selected_category here
elif selected_category == "Skin Disease":
home_page(selected_category) # Pass selected_category here
elif selected_category == "Eye Disease":
home_page(selected_category) # Pass selected_category here
elif selected_category == "About":
about_page()
if __name__ == '__main__':
main()
|