Fawaz commited on
Commit
d2914a7
Β·
1 Parent(s): ff116b0

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +186 -0
app.py ADDED
@@ -0,0 +1,186 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+ import torch.utils.data
5
+ import torchvision.transforms as transforms
6
+ from transformers import GPT2Tokenizer, GPT2LMHeadModel
7
+ from PIL import Image
8
+ import clip
9
+ import numpy as np
10
+ import cv2
11
+ import gradio as gr
12
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
13
+
14
+ def top_filtering(logits, top_k=0., top_p=0.9, threshold=-float('Inf'), filter_value=-float('Inf')):
15
+
16
+ assert logits.dim() == 1 # Only work for batch size 1 for now - could update but it would obfuscate a bit the code
17
+ top_k = min(top_k, logits.size(-1))
18
+ if top_k > 0:
19
+ # Remove all tokens with a probability less than the last token in the top-k tokens
20
+ indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
21
+ logits[indices_to_remove] = filter_value
22
+
23
+ if top_p > 0.0:
24
+ # Compute cumulative probabilities of sorted tokens
25
+ sorted_logits, sorted_indices = torch.sort(logits, descending=True)
26
+ cumulative_probabilities = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
27
+
28
+ # Remove tokens with cumulative probability above the threshold
29
+ sorted_indices_to_remove = cumulative_probabilities > top_p
30
+ # Shift the indices to the right to keep also the first token above the threshold
31
+ sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
32
+ sorted_indices_to_remove[..., 0] = 0
33
+
34
+ # Back to unsorted indices and set them to -infinity
35
+ indices_to_remove = sorted_indices[sorted_indices_to_remove]
36
+ logits[indices_to_remove] = filter_value
37
+
38
+ indices_to_remove = logits < threshold
39
+ logits[indices_to_remove] = filter_value
40
+
41
+ return logits
42
+
43
+ class ImageEncoder(nn.Module):
44
+
45
+ def __init__(self):
46
+ super(ImageEncoder, self).__init__()
47
+
48
+ self.encoder, _ = clip.load("ViT-B/16", device=device) # loads already in eval mode
49
+
50
+ def forward(self, x):
51
+ """
52
+ Expects a tensor of size (batch_size, 3, 224, 224)
53
+ """
54
+ with torch.no_grad():
55
+ x = x.type(self.encoder.visual.conv1.weight.dtype)
56
+ x = self.encoder.visual.conv1(x) # shape = [*, width, grid, grid]
57
+ x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
58
+ x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
59
+ x = torch.cat([self.encoder.visual.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width]
60
+ x = x + self.encoder.visual.positional_embedding.to(x.dtype)
61
+ x = self.encoder.visual.ln_pre(x)
62
+ x = x.permute(1, 0, 2) # NLD -> LND
63
+ x = self.encoder.visual.transformer(x)
64
+ grid_feats = x.permute(1, 0, 2) # LND -> NLD (N, 197, 768)
65
+ grid_feats = self.encoder.visual.ln_post(grid_feats[:,1:])
66
+
67
+ return grid_feats.float()
68
+
69
+ def change_requires_grad(model, req_grad):
70
+ for p in model.parameters():
71
+ p.requires_grad = req_grad
72
+
73
+ def load_checkpoint(ckpt_path, epoch):
74
+
75
+ model_name = 'nle_model_{}'.format(str(epoch))
76
+ tokenizer_name = 'nle_gpt2_tokenizer_0'
77
+ tokenizer = GPT2Tokenizer.from_pretrained(ckpt_path + tokenizer_name) # load tokenizer
78
+ model = GPT2LMHeadModel.from_pretrained(ckpt_path + model_name).to(device) # load model with config
79
+ return tokenizer, model
80
+
81
+ def sample_sequences(img, model, input_ids, segment_ids, tokenizer):
82
+
83
+ SPECIAL_TOKENS = ['<|endoftext|>', '<pad>', '<question>', '<answer>', '<explanation>']
84
+ special_tokens_ids = tokenizer.convert_tokens_to_ids(SPECIAL_TOKENS)
85
+ because_token = tokenizer.convert_tokens_to_ids('Δ because')
86
+ max_len = 20
87
+ current_output = []
88
+ img_embeddings = image_encoder(img)
89
+ always_exp = False
90
+
91
+ with torch.no_grad():
92
+
93
+ for step in range(max_len + 1):
94
+
95
+ if step == max_len:
96
+ break
97
+
98
+ outputs = model(input_ids=input_ids,
99
+ past_key_values=None,
100
+ attention_mask=None,
101
+ token_type_ids=segment_ids,
102
+ position_ids=None,
103
+ encoder_hidden_states=img_embeddings,
104
+ encoder_attention_mask=None,
105
+ labels=None,
106
+ use_cache=False,
107
+ output_attentions=True,
108
+ return_dict=True)
109
+
110
+ lm_logits = outputs.logits
111
+ xa_maps = outputs.cross_attentions
112
+ logits = lm_logits[0, -1, :] / temperature
113
+ logits = top_filtering(logits, top_k=top_k, top_p=top_p)
114
+ probs = F.softmax(logits, dim=-1)
115
+ prev = torch.topk(probs, 1)[1] if no_sample else torch.multinomial(probs, 1)
116
+
117
+ if prev.item() in special_tokens_ids:
118
+ break
119
+
120
+ # take care of when to start the <explanation> token. Nasty code in here (i hate lots of ifs)
121
+ if not always_exp:
122
+
123
+ if prev.item() != because_token:
124
+ new_segment = special_tokens_ids[-2] # answer segment
125
+ else:
126
+ new_segment = special_tokens_ids[-1] # explanation segment
127
+ always_exp = True
128
+ else:
129
+ new_segment = special_tokens_ids[-1] # explanation segment
130
+
131
+ new_segment = torch.LongTensor([new_segment]).to(device)
132
+ current_output.append(prev.item())
133
+ input_ids = torch.cat((input_ids, prev.unsqueeze(0)), dim = 1)
134
+ segment_ids = torch.cat((segment_ids, new_segment.unsqueeze(0)), dim = 1)
135
+
136
+ decoded_sequences = tokenizer.decode(current_output, skip_special_tokens=True).lstrip()
137
+
138
+ return decoded_sequences, xa_maps
139
+
140
+ def get_inputs(tokenizer):
141
+ a_segment_id, e_segment_id = tokenizer.convert_tokens_to_ids(['<answer>', '<explanation>'])
142
+ tokens = [tokenizer.bos_token] + tokenizer.tokenize("the answer is")
143
+ segment_ids = [a_segment_id] * len(tokens)
144
+ input_ids = tokenizer.convert_tokens_to_ids(tokens)
145
+ input_ids = torch.tensor(input_ids, dtype=torch.long)
146
+ segment_ids = torch.tensor(segment_ids, dtype=torch.long)
147
+
148
+ return input_ids.unsqueeze(0).to(device), segment_ids.unsqueeze(0).to(device)
149
+
150
+ img_size = 224
151
+ ckpt_path = 'ACTX_p/'
152
+ max_seq_len = 30
153
+ load_from_epoch = 5
154
+ no_sample = True
155
+ top_k = 0
156
+ top_p = 0.9
157
+ temperature = 1
158
+
159
+ image_encoder = ImageEncoder().to(device)
160
+ change_requires_grad(image_encoder, False)
161
+ tokenizer, model = load_checkpoint(ckpt_path, load_from_epoch)
162
+ model.eval()
163
+
164
+
165
+ img_transform = transforms.Compose([transforms.Resize((img_size,img_size)),
166
+ transforms.ToTensor(),
167
+ transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
168
+
169
+ def inference(raw_image):
170
+
171
+ oimg = raw_image.convert('RGB').resize((224,224))
172
+ img = img_transform(oimg).unsqueeze(0).to(device)
173
+ input_ids, segment_ids = get_inputs(tokenizer)
174
+ seq, xa_maps = sample_sequences(img, model, input_ids, segment_ids, tokenizer)
175
+ last_am = xa_maps[-1].mean(1)[0]
176
+ mask = last_am[0, :].reshape(14,14).cpu().numpy()
177
+ mask = cv2.resize(mask / mask.max(), oimg.size)[..., np.newaxis]
178
+ attention_map = (mask * oimg).astype("uint8")
179
+ splitted_seq = seq.split("because")
180
+ return splitted_seq[0].strip(), "because " + splitted_seq[-1].strip(), Image.fromarray(attention_map)
181
+
182
+ inputs = [gr.inputs.Image(type='pil', label="Load the image of your interest")]
183
+ outputs = [gr.outputs.Textbox(label="What action is this?"), gr.outputs.Textbox(label="Textual Explanation"), gr.outputs.Image(type='pil', label="Visual Explanation")]
184
+
185
+ title = "NLX-GPT: Explanations with Natural Text (Action Recognition Demo)"
186
+ gr.Interface(inference, inputs, outputs, title=title).launch()