Create streamlit_app.py
Browse files- streamlit_app.py +58 -0
streamlit_app.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py
|
2 |
+
|
3 |
+
import streamlit as st
|
4 |
+
import os
|
5 |
+
|
6 |
+
# Local imports
|
7 |
+
from embedding import load_embeddings
|
8 |
+
from vectorstore import load_or_build_vectorstore
|
9 |
+
from chain_setup import build_conversational_chain
|
10 |
+
|
11 |
+
def main():
|
12 |
+
st.title("💬 Conversational Chat - Data Management & Personal Data Protection")
|
13 |
+
|
14 |
+
# Paths and constants
|
15 |
+
local_file = "PoliciesEn001.pdf"
|
16 |
+
index_folder = "faiss_index"
|
17 |
+
|
18 |
+
# Step 1: Load Embeddings
|
19 |
+
embeddings = load_embeddings()
|
20 |
+
|
21 |
+
# Step 2: Build or load VectorStore
|
22 |
+
vectorstore = load_or_build_vectorstore(local_file, index_folder, embeddings)
|
23 |
+
|
24 |
+
# Step 3: Build the Conversational Retrieval Chain
|
25 |
+
qa_chain = build_conversational_chain(vectorstore)
|
26 |
+
|
27 |
+
# Step 4: Session State for UI Chat
|
28 |
+
if "messages" not in st.session_state:
|
29 |
+
st.session_state["messages"] = [
|
30 |
+
{"role": "assistant", "content": "👋 Hello! Ask me anything about Data Management & Personal Data Protection!"}
|
31 |
+
]
|
32 |
+
|
33 |
+
# Display existing messages
|
34 |
+
for msg in st.session_state["messages"]:
|
35 |
+
with st.chat_message(msg["role"]):
|
36 |
+
st.markdown(msg["content"])
|
37 |
+
|
38 |
+
# Step 5: Chat Input
|
39 |
+
user_input = st.chat_input("Type your question...")
|
40 |
+
|
41 |
+
# Step 6: Process user input
|
42 |
+
if user_input:
|
43 |
+
# a) Display user message
|
44 |
+
st.session_state["messages"].append({"role": "user", "content": user_input})
|
45 |
+
with st.chat_message("user"):
|
46 |
+
st.markdown(user_input)
|
47 |
+
|
48 |
+
# b) Run chain
|
49 |
+
response_dict = qa_chain({"question": user_input})
|
50 |
+
answer = response_dict["answer"]
|
51 |
+
|
52 |
+
# c) Display assistant response
|
53 |
+
st.session_state["messages"].append({"role": "assistant", "content": answer})
|
54 |
+
with st.chat_message("assistant"):
|
55 |
+
st.markdown(answer)
|
56 |
+
|
57 |
+
if __name__ == "__main__":
|
58 |
+
main()
|