Update chain_setup.py
Browse files- chain_setup.py +7 -34
chain_setup.py
CHANGED
@@ -1,50 +1,23 @@
|
|
1 |
from langchain.chains import ConversationalRetrievalChain
|
2 |
-
from langchain.llms import
|
3 |
from langchain.memory import ConversationBufferMemory
|
4 |
-
import transformers
|
5 |
-
import torch
|
6 |
-
import os
|
7 |
|
8 |
def load_llm():
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
os.makedirs(offload_folder, exist_ok=True)
|
15 |
-
|
16 |
-
model = transformers.AutoModelForCausalLM.from_pretrained(
|
17 |
-
model_id,
|
18 |
-
trust_remote_code=True,
|
19 |
-
device_map="auto", # Use "cpu" if no GPU is available
|
20 |
-
offload_folder=offload_folder
|
21 |
-
)
|
22 |
-
|
23 |
-
pipe = transformers.pipeline(
|
24 |
-
"text-generation",
|
25 |
-
model=model,
|
26 |
-
tokenizer=tokenizer,
|
27 |
-
max_new_tokens=512 # Adjust as needed
|
28 |
-
)
|
29 |
-
return HuggingFacePipeline(pipeline=pipe)
|
30 |
-
|
31 |
def build_conversational_chain(vectorstore):
|
32 |
-
"""
|
33 |
-
Creates a ConversationalRetrievalChain using the HuggingFacePipeline based LLM
|
34 |
-
and a ConversationBufferMemory for multi-turn Q&A.
|
35 |
-
"""
|
36 |
llm = load_llm()
|
37 |
-
|
38 |
memory = ConversationBufferMemory(
|
39 |
memory_key="chat_history",
|
40 |
return_messages=True
|
41 |
)
|
42 |
-
|
43 |
qa_chain = ConversationalRetrievalChain.from_llm(
|
44 |
llm=llm,
|
45 |
retriever=vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 5}),
|
46 |
memory=memory,
|
47 |
-
verbose=True
|
48 |
)
|
49 |
-
|
50 |
return qa_chain
|
|
|
1 |
from langchain.chains import ConversationalRetrievalChain
|
2 |
+
from langchain.llms import LlamaCpp
|
3 |
from langchain.memory import ConversationBufferMemory
|
|
|
|
|
|
|
4 |
|
5 |
def load_llm():
|
6 |
+
model_path = "qwen2.5-7b-instruct-q4_k_m.gguf" # path to your GGUF file
|
7 |
+
# Adjust parameters like n_ctx as needed
|
8 |
+
llm = LlamaCpp(model_path=model_path, n_ctx=2048)
|
9 |
+
return llm
|
10 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
def build_conversational_chain(vectorstore):
|
|
|
|
|
|
|
|
|
12 |
llm = load_llm()
|
|
|
13 |
memory = ConversationBufferMemory(
|
14 |
memory_key="chat_history",
|
15 |
return_messages=True
|
16 |
)
|
|
|
17 |
qa_chain = ConversationalRetrievalChain.from_llm(
|
18 |
llm=llm,
|
19 |
retriever=vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 5}),
|
20 |
memory=memory,
|
21 |
+
verbose=True
|
22 |
)
|
|
|
23 |
return qa_chain
|