Spaces:
Runtime error
Runtime error
Fecalisboa
commited on
Commit
•
510c455
1
Parent(s):
217ade3
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,326 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
from pathlib import Path
|
4 |
+
import re
|
5 |
+
from unidecode import unidecode
|
6 |
+
import chromadb
|
7 |
+
from langchain_community.vectorstores import FAISS, ScaNN, Milvus
|
8 |
+
from langchain_community.document_loaders import PyPDFLoader
|
9 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
10 |
+
from langchain_community.vectorstores import Chroma
|
11 |
+
from langchain.chains import ConversationalRetrievalChain
|
12 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
13 |
+
from langchain_community.llms import HuggingFacePipeline
|
14 |
+
from langchain.chains import ConversationChain
|
15 |
+
from langchain.memory import ConversationBufferMemory
|
16 |
+
from langchain_community.llms import HuggingFaceEndpoint
|
17 |
+
import torch
|
18 |
+
|
19 |
+
api_token = os.getenv("HF_TOKEN")
|
20 |
+
|
21 |
+
list_llm = ["meta-llama/Meta-Llama-3-8B-Instruct", "mistralai/Mistral-7B-Instruct-v0.3"]
|
22 |
+
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
|
23 |
+
|
24 |
+
# Load PDF document and create doc splits
|
25 |
+
def load_doc(list_file_path, chunk_size, chunk_overlap):
|
26 |
+
loaders = [PyPDFLoader(x) for x in list_file_path]
|
27 |
+
pages = []
|
28 |
+
for loader in loaders:
|
29 |
+
pages.extend(loader.load())
|
30 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
|
31 |
+
doc_splits = text_splitter.split_documents(pages)
|
32 |
+
return doc_splits
|
33 |
+
|
34 |
+
# Create vector database
|
35 |
+
def create_db(splits, collection_name, db_type):
|
36 |
+
embedding = HuggingFaceEmbeddings()
|
37 |
+
|
38 |
+
if db_type == "ChromaDB":
|
39 |
+
new_client = chromadb.EphemeralClient()
|
40 |
+
vectordb = Chroma.from_documents(
|
41 |
+
documents=splits,
|
42 |
+
embedding=embedding,
|
43 |
+
client=new_client,
|
44 |
+
collection_name=collection_name,
|
45 |
+
)
|
46 |
+
elif db_type == "FAISS":
|
47 |
+
vectordb = FAISS.from_documents(
|
48 |
+
documents=splits,
|
49 |
+
embedding=embedding
|
50 |
+
)
|
51 |
+
elif db_type == "ScaNN":
|
52 |
+
vectordb = ScaNN.from_documents(
|
53 |
+
documents=splits,
|
54 |
+
embedding=embedding
|
55 |
+
)
|
56 |
+
elif db_type == "Milvus":
|
57 |
+
vectordb = Milvus.from_documents(
|
58 |
+
documents=splits,
|
59 |
+
embedding=embedding,
|
60 |
+
collection_name=collection_name,
|
61 |
+
)
|
62 |
+
else:
|
63 |
+
raise ValueError(f"Unsupported vector database type: {db_type}")
|
64 |
+
|
65 |
+
return vectordb
|
66 |
+
|
67 |
+
# Initialize langchain LLM chain
|
68 |
+
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, initial_prompt, progress=gr.Progress()):
|
69 |
+
progress(0.1, desc="Initializing HF tokenizer...")
|
70 |
+
|
71 |
+
progress(0.5, desc="Initializing HF Hub...")
|
72 |
+
|
73 |
+
llm = HuggingFaceEndpoint(
|
74 |
+
repo_id=llm_model,
|
75 |
+
huggingfacehub_api_token=api_token,
|
76 |
+
temperature=temperature,
|
77 |
+
max_new_tokens=max_tokens,
|
78 |
+
top_k=top_k,
|
79 |
+
)
|
80 |
+
|
81 |
+
progress(0.75, desc="Defining buffer memory...")
|
82 |
+
memory = ConversationBufferMemory(
|
83 |
+
memory_key="chat_history",
|
84 |
+
output_key='answer',
|
85 |
+
return_messages=True
|
86 |
+
)
|
87 |
+
retriever = vector_db.as_retriever()
|
88 |
+
progress(0.8, desc="Defining retrieval chain...")
|
89 |
+
qa_chain = ConversationalRetrievalChain.from_llm(
|
90 |
+
llm,
|
91 |
+
retriever=retriever,
|
92 |
+
chain_type="stuff",
|
93 |
+
memory=memory,
|
94 |
+
return_source_documents=True,
|
95 |
+
verbose=False,
|
96 |
+
)
|
97 |
+
qa_chain({"question": initial_prompt}) # Initialize with the initial prompt
|
98 |
+
progress(0.9, desc="Done!")
|
99 |
+
return qa_chain
|
100 |
+
|
101 |
+
def initialize_llm_no_doc(llm_model, temperature, max_tokens, top_k, initial_prompt, progress=gr.Progress()):
|
102 |
+
progress(0.1, desc="Initializing HF tokenizer...")
|
103 |
+
progress(0.5, desc="Initializing HF Hub...")
|
104 |
+
llm = HuggingFaceEndpoint(
|
105 |
+
repo_id=llm_model,
|
106 |
+
huggingfacehub_api_token=api_token,
|
107 |
+
temperature=temperature,
|
108 |
+
max_new_tokens=max_tokens,
|
109 |
+
top_k=top_k,
|
110 |
+
)
|
111 |
+
progress(0.75, desc="Defining buffer memory...")
|
112 |
+
memory = ConversationBufferMemory(
|
113 |
+
memory_key="chat_history",
|
114 |
+
output_key='answer',
|
115 |
+
return_messages=True
|
116 |
+
)
|
117 |
+
conversation_chain = ConversationChain(llm=llm, memory=memory, verbose=False)
|
118 |
+
conversation_chain({"question": initial_prompt})
|
119 |
+
progress(0.9, desc="Done!")
|
120 |
+
return conversation_chain
|
121 |
+
|
122 |
+
def format_chat_history(message, chat_history):
|
123 |
+
formatted_chat_history = []
|
124 |
+
for user_message, bot_message in chat_history:
|
125 |
+
formatted_chat_history.append(f"User: {user_message}")
|
126 |
+
formatted_chat_history.append(f"Assistant: {bot_message}")
|
127 |
+
return formatted_chat_history
|
128 |
+
|
129 |
+
def conversation(qa_chain, message, history):
|
130 |
+
formatted_chat_history = format_chat_history(message, history)
|
131 |
+
response = qa_chain({"question": message, "chat_history": formatted_chat_history})
|
132 |
+
response_answer = response["answer"]
|
133 |
+
if "Helpful Answer:" in response_answer:
|
134 |
+
response_answer = response_answer.split("Helpful Answer:")[-1]
|
135 |
+
response_sources = response["source_documents"]
|
136 |
+
response_source1 = response_sources[0].page_content.strip()
|
137 |
+
response_source2 = response_sources[1].page_content.strip()
|
138 |
+
response_source3 = response_sources[2].page_content.strip()
|
139 |
+
response_source1_page = response_sources[0].metadata["page"] + 1
|
140 |
+
response_source2_page = response_sources[1].metadata["page"] + 1
|
141 |
+
response_source3_page = response_sources[2].metadata["page"] + 1
|
142 |
+
|
143 |
+
new_history = history + [(message, response_answer)]
|
144 |
+
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
|
145 |
+
|
146 |
+
def conversation_no_doc(llm, message, history):
|
147 |
+
formatted_chat_history = format_chat_history(message, history)
|
148 |
+
response = llm({"question": message, "chat_history": formatted_chat_history})
|
149 |
+
response_answer = response["answer"]
|
150 |
+
new_history = history + [(message, response_answer)]
|
151 |
+
return llm, gr.update(value=""), new_history
|
152 |
+
|
153 |
+
def upload_file(file_obj):
|
154 |
+
list_file_path = []
|
155 |
+
for file in file_obj:
|
156 |
+
list_file_path.append(file.name)
|
157 |
+
return list_file_path
|
158 |
+
|
159 |
+
def initialize_database(list_file_obj, chunk_size, chunk_overlap, db_type, progress=gr.Progress()):
|
160 |
+
list_file_path = [x.name for x in list_file_obj if x is not None]
|
161 |
+
progress(0.1, desc="Creating collection name...")
|
162 |
+
collection_name = create_collection_name(list_file_path[0])
|
163 |
+
progress(0.25, desc="Loading document...")
|
164 |
+
doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap)
|
165 |
+
progress(0.5, desc="Generating vector database...")
|
166 |
+
vector_db = create_db(doc_splits, collection_name, db_type)
|
167 |
+
progress(0.9, desc="Done!")
|
168 |
+
return vector_db, collection_name, "Complete!"
|
169 |
+
|
170 |
+
def create_collection_name(filepath):
|
171 |
+
collection_name = Path(filepath).stem
|
172 |
+
collection_name = collection_name.replace(" ", "-")
|
173 |
+
collection_name = unidecode(collection_name)
|
174 |
+
collection_name = re.sub('[^A-Za-z0-9]+', '-', collection_name)
|
175 |
+
collection_name = collection_name[:50]
|
176 |
+
if len(collection_name) < 3:
|
177 |
+
collection_name = collection_name + 'xyz'
|
178 |
+
if not collection_name[0].isalnum():
|
179 |
+
collection_name = 'A' + collection_name[1:]
|
180 |
+
if not collection_name[-1].isalnum():
|
181 |
+
collection_name = collection_name[:-1] + 'Z'
|
182 |
+
print('Filepath: ', filepath)
|
183 |
+
print('Collection name: ', collection_name)
|
184 |
+
return collection_name
|
185 |
+
|
186 |
+
def demo():
|
187 |
+
with gr.Blocks(theme="base") as demo:
|
188 |
+
vector_db = gr.State()
|
189 |
+
qa_chain = gr.State()
|
190 |
+
collection_name = gr.State()
|
191 |
+
initial_prompt = gr.State("")
|
192 |
+
llm_no_doc = gr.State()
|
193 |
+
|
194 |
+
gr.Markdown(
|
195 |
+
"""<center><h2>lucIAna</center></h2>
|
196 |
+
<h3>Olá, sou a 2. versão</h3>""")
|
197 |
+
gr.Markdown(
|
198 |
+
"""<b>Note:</b> Esta é a lucIAna, primeira Versão da IA para seus PDF documentos.
|
199 |
+
Este chatbot leva em consideração perguntas anteriores ao gerar respostas (por meio de memória conversacional) e inclui referências a documentos para fins de clareza.
|
200 |
+
""")
|
201 |
+
|
202 |
+
with gr.Tab("Step 1 - Upload PDF"):
|
203 |
+
with gr.Row():
|
204 |
+
document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload your PDF documents (single or multiple)")
|
205 |
+
|
206 |
+
with gr.Tab("Step 2 - Process document"):
|
207 |
+
with gr.Row():
|
208 |
+
db_type_radio = gr.Radio(["ChromaDB", "FAISS", "ScaNN", "Milvus"], label="Vector database type", value="ChromaDB", type="value", info="Choose your vector database")
|
209 |
+
with gr.Accordion("Advanced options - Document text splitter", open=False):
|
210 |
+
with gr.Row():
|
211 |
+
slider_chunk_size = gr.Slider(minimum=100, maximum=1000, value=600, step=20, label="Chunk size", info="Chunk size", interactive=True)
|
212 |
+
with gr.Row():
|
213 |
+
slider_chunk_overlap = gr.Slider(minimum=10, maximum=200, value=40, step=10, label="Chunk overlap", info="Chunk overlap", interactive=True)
|
214 |
+
with gr.Row():
|
215 |
+
db_progress = gr.Textbox(label="Vector database initialization", value="None")
|
216 |
+
with gr.Row():
|
217 |
+
db_btn = gr.Button("Generate vector database")
|
218 |
+
|
219 |
+
with gr.Tab("Step 3 - Set Initial Prompt"):
|
220 |
+
with gr.Row():
|
221 |
+
prompt_input = gr.Textbox(label="Initial Prompt", lines=5, value="Você é um advogado sênior, onde seu papel é analisar e trazer as informações sem inventar, dando a sua melhor opinião sempre trazendo contexto e referência. Aprenda o que é jurisprudência.")
|
222 |
+
with gr.Row():
|
223 |
+
set_prompt_btn = gr.Button("Set Prompt")
|
224 |
+
|
225 |
+
with gr.Tab("Step 4 - Initialize QA chain"):
|
226 |
+
with gr.Row():
|
227 |
+
llm_btn = gr.Radio(list_llm_simple,
|
228 |
+
label="LLM models", value=list_llm_simple[0], type="index", info="Choose your LLM model")
|
229 |
+
with gr.Accordion("Advanced options - LLM model", open=False):
|
230 |
+
with gr.Row():
|
231 |
+
slider_temperature = gr.Slider(minimum=0.01, maximum=1.0, value=0.7, step=0.1, label="Temperature", info="Model temperature", interactive=True)
|
232 |
+
with gr.Row():
|
233 |
+
slider_maxtokens = gr.Slider(minimum=224, maximum=4096, value=1024, step=32, label="Max Tokens", info="Model max tokens", interactive=True)
|
234 |
+
with gr.Row():
|
235 |
+
slider_topk = gr.Slider(minimum=1, maximum=10, value=3, step=1, label="top-k samples", info="Model top-k samples", interactive=True)
|
236 |
+
with gr.Row():
|
237 |
+
llm_progress = gr.Textbox(value="None", label="QA chain initialization")
|
238 |
+
with gr.Row():
|
239 |
+
qachain_btn = gr.Button("Initialize Question Answering chain")
|
240 |
+
|
241 |
+
with gr.Tab("Step 5 - Chatbot with document"):
|
242 |
+
chatbot = gr.Chatbot(height=300)
|
243 |
+
with gr.Accordion("Advanced - Document references", open=False):
|
244 |
+
with gr.Row():
|
245 |
+
doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
|
246 |
+
source1_page = gr.Number(label="Page", scale=1)
|
247 |
+
with gr.Row():
|
248 |
+
doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20)
|
249 |
+
source2_page = gr.Number(label="Page", scale=1)
|
250 |
+
with gr.Row():
|
251 |
+
doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20)
|
252 |
+
source3_page = gr.Number(label="Page", scale=1)
|
253 |
+
with gr.Row():
|
254 |
+
msg = gr.Textbox(placeholder="Type message (e.g. 'What is this document about?')", container=True)
|
255 |
+
with gr.Row():
|
256 |
+
submit_btn = gr.Button("Submit message")
|
257 |
+
clear_btn = gr.ClearButton([msg, chatbot], value="Clear conversation")
|
258 |
+
|
259 |
+
with gr.Tab("Step 6 - Chatbot without document"):
|
260 |
+
with gr.Row():
|
261 |
+
llm_no_doc_btn = gr.Radio(list_llm_simple,
|
262 |
+
label="LLM models", value=list_llm_simple[0], type="index", info="Choose your LLM model for chatbot without document")
|
263 |
+
with gr.Accordion("Advanced options - LLM model", open=False):
|
264 |
+
with gr.Row():
|
265 |
+
slider_temperature_no_doc = gr.Slider(minimum=0.01, maximum=1.0, value=0.7, step=0.1, label="Temperature", info="Model temperature", interactive=True)
|
266 |
+
with gr.Row():
|
267 |
+
slider_maxtokens_no_doc = gr.Slider(minimum=224, maximum=4096, value=1024, step=32, label="Max Tokens", info="Model max tokens", interactive=True)
|
268 |
+
with gr.Row():
|
269 |
+
slider_topk_no_doc = gr.Slider(minimum=1, maximum=10, value=3, step=1, label="top-k samples", info="Model top-k samples", interactive=True)
|
270 |
+
with gr.Row():
|
271 |
+
llm_no_doc_progress = gr.Textbox(value="None", label="LLM initialization for chatbot without document")
|
272 |
+
with gr.Row():
|
273 |
+
llm_no_doc_init_btn = gr.Button("Initialize LLM for Chatbot without document")
|
274 |
+
chatbot_no_doc = gr.Chatbot(height=300)
|
275 |
+
with gr.Row():
|
276 |
+
msg_no_doc = gr.Textbox(placeholder="Type message to chat with lucIAna", container=True)
|
277 |
+
with gr.Row():
|
278 |
+
submit_btn_no_doc = gr.Button("Submit message")
|
279 |
+
clear_btn_no_doc = gr.ClearButton([msg_no_doc, chatbot_no_doc], value="Clear conversation")
|
280 |
+
|
281 |
+
# Preprocessing events
|
282 |
+
db_btn.click(initialize_database,
|
283 |
+
inputs=[document, slider_chunk_size, slider_chunk_overlap, db_type_radio],
|
284 |
+
outputs=[vector_db, collection_name, db_progress])
|
285 |
+
set_prompt_btn.click(lambda prompt: gr.update(value=prompt),
|
286 |
+
inputs=prompt_input,
|
287 |
+
outputs=initial_prompt)
|
288 |
+
qachain_btn.click(initialize_llmchain,
|
289 |
+
inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db, initial_prompt],
|
290 |
+
outputs=[qa_chain, llm_progress]).then(lambda:[None,"",0,"",0,"",0],
|
291 |
+
inputs=None,
|
292 |
+
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
|
293 |
+
queue=False)
|
294 |
+
|
295 |
+
# Chatbot events with document
|
296 |
+
msg.submit(conversation,
|
297 |
+
inputs=[qa_chain, msg, chatbot],
|
298 |
+
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
|
299 |
+
queue=False)
|
300 |
+
submit_btn.click(conversation,
|
301 |
+
inputs=[qa_chain, msg, chatbot],
|
302 |
+
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
|
303 |
+
queue=False)
|
304 |
+
clear_btn.click(lambda:[None,"",0,"",0,"",0],
|
305 |
+
inputs=None,
|
306 |
+
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
|
307 |
+
queue=False)
|
308 |
+
|
309 |
+
# Initialize LLM without document for conversation
|
310 |
+
llm_no_doc_init_btn.click(initialize_llm_no_doc,
|
311 |
+
inputs=[llm_no_doc_btn, slider_temperature_no_doc, slider_maxtokens_no_doc, slider_topk_no_doc, initial_prompt],
|
312 |
+
outputs=[llm_no_doc, llm_no_doc_progress])
|
313 |
+
|
314 |
+
submit_btn_no_doc.click(conversation_no_doc,
|
315 |
+
inputs=[llm_no_doc, msg_no_doc, chatbot_no_doc],
|
316 |
+
outputs=[llm_no_doc, msg_no_doc, chatbot_no_doc],
|
317 |
+
queue=False)
|
318 |
+
clear_btn_no_doc.click(lambda:[None,""],
|
319 |
+
inputs=None,
|
320 |
+
outputs=[chatbot_no_doc, msg_no_doc],
|
321 |
+
queue=False)
|
322 |
+
|
323 |
+
demo.queue().launch(debug=True, share=True)
|
324 |
+
|
325 |
+
if __name__ == "__main__":
|
326 |
+
demo()
|