Fecalisboa commited on
Commit
5a1f027
·
verified ·
1 Parent(s): 980d18b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +49 -80
app.py CHANGED
@@ -22,7 +22,29 @@ import tqdm
22
  import accelerate
23
  import re
24
 
 
 
 
 
 
 
 
 
 
 
 
25
 
 
 
 
 
 
 
 
 
 
 
 
26
 
27
  # default_persist_directory = './chroma_HF/'
28
  list_llm = ["mistralai/Mistral-7B-Instruct-v0.3", "mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mistral-7B-Instruct-v0.1", \
@@ -36,21 +58,14 @@ list_llm_simple = [os.path.basename(llm) for llm in list_llm]
36
 
37
  # Load PDF document and create doc splits
38
  def load_doc(list_file_path, chunk_size, chunk_overlap):
39
- # Processing for one document only
40
- # loader = PyPDFLoader(file_path)
41
- # pages = loader.load()
42
  loaders = [PyPDFLoader(x) for x in list_file_path]
43
  pages = []
44
  for loader in loaders:
45
  pages.extend(loader.load())
46
- # text_splitter = RecursiveCharacterTextSplitter(chunk_size = 600, chunk_overlap = 50)
47
- text_splitter = RecursiveCharacterTextSplitter(
48
- chunk_size = chunk_size,
49
- chunk_overlap = chunk_overlap)
50
  doc_splits = text_splitter.split_documents(pages)
51
  return doc_splits
52
 
53
-
54
  # Create vector database
55
  def create_db(splits, collection_name):
56
  embedding = HuggingFaceEmbeddings()
@@ -60,52 +75,25 @@ def create_db(splits, collection_name):
60
  embedding=embedding,
61
  client=new_client,
62
  collection_name=collection_name,
63
- # persist_directory=default_persist_directory
64
  )
65
  return vectordb
66
 
67
-
68
  # Load vector database
69
  def load_db():
70
  embedding = HuggingFaceEmbeddings()
71
  vectordb = Chroma(
72
- # persist_directory=default_persist_directory,
73
  embedding_function=embedding)
74
  return vectordb
75
 
76
-
77
  # Initialize langchain LLM chain
78
  def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
79
  progress(0.1, desc="Initializing HF tokenizer...")
80
- # HuggingFacePipeline uses local model
81
- # Note: it will download model locally...
82
- # tokenizer=AutoTokenizer.from_pretrained(llm_model)
83
- # progress(0.5, desc="Initializing HF pipeline...")
84
- # pipeline=transformers.pipeline(
85
- # "text-generation",
86
- # model=llm_model,
87
- # tokenizer=tokenizer,
88
- # torch_dtype=torch.bfloat16,
89
- # trust_remote_code=True,
90
- # device_map="auto",
91
- # # max_length=1024,
92
- # max_new_tokens=max_tokens,
93
- # do_sample=True,
94
- # top_k=top_k,
95
- # num_return_sequences=1,
96
- # eos_token_id=tokenizer.eos_token_id
97
- # )
98
- # llm = HuggingFacePipeline(pipeline=pipeline, model_kwargs={'temperature': temperature})
99
 
100
- # HuggingFaceHub uses HF inference endpoints
101
  progress(0.5, desc="Initializing HF Hub...")
102
- # Use of trust_remote_code as model_kwargs
103
- # Warning: langchain issue
104
- # URL: https://github.com/langchain-ai/langchain/issues/6080
105
  if llm_model == "mistralai/Mixtral-8x7B-Instruct-v0.3":
106
  llm = HuggingFaceEndpoint(
107
  repo_id=llm_model,
108
- # model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "load_in_8bit": True}
109
  temperature = temperature,
110
  max_new_tokens = max_tokens,
111
  top_k = top_k,
@@ -120,10 +108,8 @@ def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, pr
120
  top_k = top_k,
121
  )
122
  elif llm_model == "microsoft/phi-2":
123
- # raise gr.Error("phi-2 model requires 'trust_remote_code=True', currently not supported by langchain HuggingFaceHub...")
124
  llm = HuggingFaceEndpoint(
125
  repo_id=llm_model,
126
- # model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "trust_remote_code": True, "torch_dtype": "auto"}
127
  temperature = temperature,
128
  max_new_tokens = max_tokens,
129
  top_k = top_k,
@@ -133,7 +119,6 @@ def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, pr
133
  elif llm_model == "TinyLlama/TinyLlama-1.1B-Chat-v1.0":
134
  llm = HuggingFaceEndpoint(
135
  repo_id=llm_model,
136
- # model_kwargs={"temperature": temperature, "max_new_tokens": 250, "top_k": top_k}
137
  temperature = temperature,
138
  max_new_tokens = 250,
139
  top_k = top_k,
@@ -142,7 +127,6 @@ def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, pr
142
  raise gr.Error("Llama-2-7b-chat-hf model requires a Pro subscription...")
143
  llm = HuggingFaceEndpoint(
144
  repo_id=llm_model,
145
- # model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k}
146
  temperature = temperature,
147
  max_new_tokens = max_tokens,
148
  top_k = top_k,
@@ -150,8 +134,6 @@ def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, pr
150
  else:
151
  llm = HuggingFaceEndpoint(
152
  repo_id=llm_model,
153
- # model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "trust_remote_code": True, "torch_dtype": "auto"}
154
- # model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k}
155
  temperature = temperature,
156
  max_new_tokens = max_tokens,
157
  top_k = top_k,
@@ -163,7 +145,6 @@ def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, pr
163
  output_key='answer',
164
  return_messages=True
165
  )
166
- # retriever=vector_db.as_retriever(search_type="similarity", search_kwargs={'k': 3})
167
  retriever=vector_db.as_retriever()
168
  progress(0.8, desc="Defining retrieval chain...")
169
  qa_chain = ConversationalRetrievalChain.from_llm(
@@ -171,34 +152,21 @@ def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, pr
171
  retriever=retriever,
172
  chain_type="stuff",
173
  memory=memory,
174
- # combine_docs_chain_kwargs={"prompt": your_prompt})
175
  return_source_documents=True,
176
- #return_generated_question=False,
177
  verbose=False,
178
  )
179
  progress(0.9, desc="Done!")
180
  return qa_chain
181
 
182
-
183
  # Generate collection name for vector database
184
- # - Use filepath as input, ensuring unicode text
185
  def create_collection_name(filepath):
186
- # Extract filename without extension
187
  collection_name = Path(filepath).stem
188
- # Fix potential issues from naming convention
189
- ## Remove space
190
  collection_name = collection_name.replace(" ","-")
191
- ## ASCII transliterations of Unicode text
192
  collection_name = unidecode(collection_name)
193
- ## Remove special characters
194
- #collection_name = re.findall("[\dA-Za-z]*", collection_name)[0]
195
  collection_name = re.sub('[^A-Za-z0-9]+', '-', collection_name)
196
- ## Limit length to 50 characters
197
  collection_name = collection_name[:50]
198
- ## Minimum length of 3 characters
199
  if len(collection_name) < 3:
200
  collection_name = collection_name + 'xyz'
201
- ## Enforce start and end as alphanumeric character
202
  if not collection_name[0].isalnum():
203
  collection_name = 'A' + collection_name[1:]
204
  if not collection_name[-1].isalnum():
@@ -207,46 +175,34 @@ def create_collection_name(filepath):
207
  print('Collection name: ', collection_name)
208
  return collection_name
209
 
210
-
211
  # Initialize database
212
  def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()):
213
- # Create list of documents (when valid)
214
  list_file_path = [x.name for x in list_file_obj if x is not None]
215
- # Create collection_name for vector database
216
  progress(0.1, desc="Creating collection name...")
217
  collection_name = create_collection_name(list_file_path[0])
218
  progress(0.25, desc="Loading document...")
219
- # Load document and create splits
220
  doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap)
221
- # Create or load vector database
222
  progress(0.5, desc="Generating vector database...")
223
- # global vector_db
224
  vector_db = create_db(doc_splits, collection_name)
225
  progress(0.9, desc="Done!")
226
  return vector_db, collection_name, "Complete!"
227
 
228
-
229
  def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
230
- # print("llm_option",llm_option)
231
  llm_name = list_llm[llm_option]
232
  print("llm_name: ",llm_name)
233
  qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
234
  return qa_chain, "Complete!"
235
 
236
-
237
  def format_chat_history(message, chat_history):
238
  formatted_chat_history = []
239
  for user_message, bot_message in chat_history:
240
  formatted_chat_history.append(f"User: {user_message}")
241
  formatted_chat_history.append(f"Assistant: {bot_message}")
242
  return formatted_chat_history
243
-
244
 
245
  def conversation(qa_chain, message, history):
246
  formatted_chat_history = format_chat_history(message, history)
247
- #print("formatted_chat_history",formatted_chat_history)
248
 
249
- # Generate response using QA chain
250
  response = qa_chain({"question": message, "chat_history": formatted_chat_history})
251
  response_answer = response["answer"]
252
  if response_answer.find("Helpful Answer:") != -1:
@@ -255,34 +211,40 @@ def conversation(qa_chain, message, history):
255
  response_source1 = response_sources[0].page_content.strip()
256
  response_source2 = response_sources[1].page_content.strip()
257
  response_source3 = response_sources[2].page_content.strip()
258
- # Langchain sources are zero-based
259
  response_source1_page = response_sources[0].metadata["page"] + 1
260
  response_source2_page = response_sources[1].metadata["page"] + 1
261
  response_source3_page = response_sources[2].metadata["page"] + 1
262
- # print ('chat response: ', response_answer)
263
- # print('DB source', response_sources)
264
 
265
- # Append user message and response to chat history
266
  new_history = history + [(message, response_answer)]
267
- # return gr.update(value=""), new_history, response_sources[0], response_sources[1]
268
  return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
269
-
270
 
271
  def upload_file(file_obj):
272
  list_file_path = []
273
  for idx, file in enumerate(file_obj):
274
  file_path = file_obj.name
275
  list_file_path.append(file_path)
276
- # print(file_path)
277
- # initialize_database(file_path, progress)
278
  return list_file_path
279
 
 
 
 
 
 
 
 
 
 
 
 
 
 
280
 
281
  def demo():
282
  with gr.Blocks(theme="base") as demo:
283
  vector_db = gr.State()
284
  qa_chain = gr.State()
285
  collection_name = gr.State()
 
286
 
287
  gr.Markdown(
288
  """<center><h2>PDF-based chatbot</center></h2>
@@ -295,7 +257,6 @@ def demo():
295
  with gr.Tab("Step 1 - Upload PDF"):
296
  with gr.Row():
297
  document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload your PDF documents (single or multiple)")
298
- # upload_btn = gr.UploadButton("Loading document...", height=100, file_count="multiple", file_types=["pdf"], scale=1)
299
 
300
  with gr.Tab("Step 2 - Process document"):
301
  with gr.Row():
@@ -309,7 +270,7 @@ def demo():
309
  db_progress = gr.Textbox(label="Vector database initialization", value="None")
310
  with gr.Row():
311
  db_btn = gr.Button("Generate vector database")
312
-
313
  with gr.Tab("Step 3 - Initialize QA chain"):
314
  with gr.Row():
315
  llm_btn = gr.Radio(list_llm_simple, \
@@ -326,7 +287,13 @@ def demo():
326
  with gr.Row():
327
  qachain_btn = gr.Button("Initialize Question Answering chain")
328
 
329
- with gr.Tab("Step 4 - Chatbot"):
 
 
 
 
 
 
330
  chatbot = gr.Chatbot(height=300)
331
  with gr.Accordion("Advanced - Document references", open=False):
332
  with gr.Row():
@@ -345,7 +312,6 @@ def demo():
345
  clear_btn = gr.ClearButton([msg, chatbot], value="Clear conversation")
346
 
347
  # Preprocessing events
348
- #upload_btn.upload(upload_file, inputs=[upload_btn], outputs=[document])
349
  db_btn.click(initialize_database, \
350
  inputs=[document, slider_chunk_size, slider_chunk_overlap], \
351
  outputs=[vector_db, collection_name, db_progress])
@@ -355,6 +321,9 @@ def demo():
355
  inputs=None, \
356
  outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
357
  queue=False)
 
 
 
358
 
359
  # Chatbot events
360
  msg.submit(conversation, \
 
22
  import accelerate
23
  import re
24
 
25
+ # LlamaParse import
26
+ from llama_parse import LlamaParse
27
+ import asyncio
28
+ from llama_index.core.async_utils import DEFAULT_NUM_WORKERS, run_jobs
29
+ from llama_index.core.base.response.schema import PydanticResponse
30
+ from llama_index.core.bridge.pydantic import BaseModel, Field, ValidationError
31
+ from llama_index.core.callbacks.base import CallbackManager
32
+ from llama_index.core.llms.llm import LLM
33
+ from llama_index.core.node_parser.interface import NodeParser
34
+ from llama_index.core.schema import BaseNode, Document, IndexNode, TextNode
35
+ from llama_index.core.utils import get_tqdm_iterable
36
 
37
+ from io import StringIO
38
+ from typing import Any, Callable, List, Optional
39
+
40
+ import pandas as pd
41
+ from llama_index.core.node_parser.relational.base_element import (
42
+ # BaseElementNodeParser,
43
+ Element,
44
+ )
45
+ from llama_index.core.schema import BaseNode, TextNode
46
+
47
+ # Implementations
48
 
49
  # default_persist_directory = './chroma_HF/'
50
  list_llm = ["mistralai/Mistral-7B-Instruct-v0.3", "mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mistral-7B-Instruct-v0.1", \
 
58
 
59
  # Load PDF document and create doc splits
60
  def load_doc(list_file_path, chunk_size, chunk_overlap):
 
 
 
61
  loaders = [PyPDFLoader(x) for x in list_file_path]
62
  pages = []
63
  for loader in loaders:
64
  pages.extend(loader.load())
65
+ text_splitter = RecursiveCharacterTextSplitter(chunk_size = chunk_size, chunk_overlap = chunk_overlap)
 
 
 
66
  doc_splits = text_splitter.split_documents(pages)
67
  return doc_splits
68
 
 
69
  # Create vector database
70
  def create_db(splits, collection_name):
71
  embedding = HuggingFaceEmbeddings()
 
75
  embedding=embedding,
76
  client=new_client,
77
  collection_name=collection_name,
 
78
  )
79
  return vectordb
80
 
 
81
  # Load vector database
82
  def load_db():
83
  embedding = HuggingFaceEmbeddings()
84
  vectordb = Chroma(
 
85
  embedding_function=embedding)
86
  return vectordb
87
 
 
88
  # Initialize langchain LLM chain
89
  def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
90
  progress(0.1, desc="Initializing HF tokenizer...")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91
 
 
92
  progress(0.5, desc="Initializing HF Hub...")
93
+
 
 
94
  if llm_model == "mistralai/Mixtral-8x7B-Instruct-v0.3":
95
  llm = HuggingFaceEndpoint(
96
  repo_id=llm_model,
 
97
  temperature = temperature,
98
  max_new_tokens = max_tokens,
99
  top_k = top_k,
 
108
  top_k = top_k,
109
  )
110
  elif llm_model == "microsoft/phi-2":
 
111
  llm = HuggingFaceEndpoint(
112
  repo_id=llm_model,
 
113
  temperature = temperature,
114
  max_new_tokens = max_tokens,
115
  top_k = top_k,
 
119
  elif llm_model == "TinyLlama/TinyLlama-1.1B-Chat-v1.0":
120
  llm = HuggingFaceEndpoint(
121
  repo_id=llm_model,
 
122
  temperature = temperature,
123
  max_new_tokens = 250,
124
  top_k = top_k,
 
127
  raise gr.Error("Llama-2-7b-chat-hf model requires a Pro subscription...")
128
  llm = HuggingFaceEndpoint(
129
  repo_id=llm_model,
 
130
  temperature = temperature,
131
  max_new_tokens = max_tokens,
132
  top_k = top_k,
 
134
  else:
135
  llm = HuggingFaceEndpoint(
136
  repo_id=llm_model,
 
 
137
  temperature = temperature,
138
  max_new_tokens = max_tokens,
139
  top_k = top_k,
 
145
  output_key='answer',
146
  return_messages=True
147
  )
 
148
  retriever=vector_db.as_retriever()
149
  progress(0.8, desc="Defining retrieval chain...")
150
  qa_chain = ConversationalRetrievalChain.from_llm(
 
152
  retriever=retriever,
153
  chain_type="stuff",
154
  memory=memory,
 
155
  return_source_documents=True,
 
156
  verbose=False,
157
  )
158
  progress(0.9, desc="Done!")
159
  return qa_chain
160
 
 
161
  # Generate collection name for vector database
 
162
  def create_collection_name(filepath):
 
163
  collection_name = Path(filepath).stem
 
 
164
  collection_name = collection_name.replace(" ","-")
 
165
  collection_name = unidecode(collection_name)
 
 
166
  collection_name = re.sub('[^A-Za-z0-9]+', '-', collection_name)
 
167
  collection_name = collection_name[:50]
 
168
  if len(collection_name) < 3:
169
  collection_name = collection_name + 'xyz'
 
170
  if not collection_name[0].isalnum():
171
  collection_name = 'A' + collection_name[1:]
172
  if not collection_name[-1].isalnum():
 
175
  print('Collection name: ', collection_name)
176
  return collection_name
177
 
 
178
  # Initialize database
179
  def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()):
 
180
  list_file_path = [x.name for x in list_file_obj if x is not None]
 
181
  progress(0.1, desc="Creating collection name...")
182
  collection_name = create_collection_name(list_file_path[0])
183
  progress(0.25, desc="Loading document...")
 
184
  doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap)
 
185
  progress(0.5, desc="Generating vector database...")
 
186
  vector_db = create_db(doc_splits, collection_name)
187
  progress(0.9, desc="Done!")
188
  return vector_db, collection_name, "Complete!"
189
 
 
190
  def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
 
191
  llm_name = list_llm[llm_option]
192
  print("llm_name: ",llm_name)
193
  qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
194
  return qa_chain, "Complete!"
195
 
 
196
  def format_chat_history(message, chat_history):
197
  formatted_chat_history = []
198
  for user_message, bot_message in chat_history:
199
  formatted_chat_history.append(f"User: {user_message}")
200
  formatted_chat_history.append(f"Assistant: {bot_message}")
201
  return formatted_chat_history
 
202
 
203
  def conversation(qa_chain, message, history):
204
  formatted_chat_history = format_chat_history(message, history)
 
205
 
 
206
  response = qa_chain({"question": message, "chat_history": formatted_chat_history})
207
  response_answer = response["answer"]
208
  if response_answer.find("Helpful Answer:") != -1:
 
211
  response_source1 = response_sources[0].page_content.strip()
212
  response_source2 = response_sources[1].page_content.strip()
213
  response_source3 = response_sources[2].page_content.strip()
 
214
  response_source1_page = response_sources[0].metadata["page"] + 1
215
  response_source2_page = response_sources[1].metadata["page"] + 1
216
  response_source3_page = response_sources[2].metadata["page"] + 1
 
 
217
 
 
218
  new_history = history + [(message, response_answer)]
 
219
  return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
 
220
 
221
  def upload_file(file_obj):
222
  list_file_path = []
223
  for idx, file in enumerate(file_obj):
224
  file_path = file_obj.name
225
  list_file_path.append(file_path)
 
 
226
  return list_file_path
227
 
228
+ # Initialize LlamaIndex parsing
229
+ def initialize_llama_index(file_obj):
230
+ documents = LlamaParse(result_type="markdown",api_key=secret_value_0).load_data(file_obj.name)
231
+ node_parser = MarkdownElementNodeParser(llm = None, num_workers=8)
232
+ nodes = node_parser.get_nodes_from_documents(documents)
233
+ base_nodes, objects = node_parser.get_nodes_and_objects(nodes)
234
+ index_with_obj = VectorStoreIndex(nodes=base_nodes+objects)
235
+ index_ret = index_with_obj.as_retriever(top_k=15)
236
+ recursive_query_engine = RetrieverQueryEngine.from_args(index_ret, node_postprocessors=[FlagEmbeddingReranker(
237
+ top_n=5,
238
+ model="BAAI/bge-reranker-large",
239
+ )], verbose=False)
240
+ return recursive_query_engine, "LlamaIndex parsing complete"
241
 
242
  def demo():
243
  with gr.Blocks(theme="base") as demo:
244
  vector_db = gr.State()
245
  qa_chain = gr.State()
246
  collection_name = gr.State()
247
+ llama_index_engine = gr.State()
248
 
249
  gr.Markdown(
250
  """<center><h2>PDF-based chatbot</center></h2>
 
257
  with gr.Tab("Step 1 - Upload PDF"):
258
  with gr.Row():
259
  document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload your PDF documents (single or multiple)")
 
260
 
261
  with gr.Tab("Step 2 - Process document"):
262
  with gr.Row():
 
270
  db_progress = gr.Textbox(label="Vector database initialization", value="None")
271
  with gr.Row():
272
  db_btn = gr.Button("Generate vector database")
273
+
274
  with gr.Tab("Step 3 - Initialize QA chain"):
275
  with gr.Row():
276
  llm_btn = gr.Radio(list_llm_simple, \
 
287
  with gr.Row():
288
  qachain_btn = gr.Button("Initialize Question Answering chain")
289
 
290
+ with gr.Tab("Step 4 - LlamaIndex parsing"):
291
+ with gr.Row():
292
+ llama_index_btn = gr.Button("Parse with LlamaIndex")
293
+ with gr.Row():
294
+ llama_index_progress = gr.Textbox(label="LlamaIndex parsing status", value="None")
295
+
296
+ with gr.Tab("Step 5 - Chatbot"):
297
  chatbot = gr.Chatbot(height=300)
298
  with gr.Accordion("Advanced - Document references", open=False):
299
  with gr.Row():
 
312
  clear_btn = gr.ClearButton([msg, chatbot], value="Clear conversation")
313
 
314
  # Preprocessing events
 
315
  db_btn.click(initialize_database, \
316
  inputs=[document, slider_chunk_size, slider_chunk_overlap], \
317
  outputs=[vector_db, collection_name, db_progress])
 
321
  inputs=None, \
322
  outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
323
  queue=False)
324
+ llama_index_btn.click(initialize_llama_index, \
325
+ inputs=[document], \
326
+ outputs=[llama_index_engine, llama_index_progress])
327
 
328
  # Chatbot events
329
  msg.submit(conversation, \