Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,5 @@
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
-
import getpass
|
4 |
from pathlib import Path
|
5 |
import re
|
6 |
from unidecode import unidecode
|
@@ -10,7 +9,7 @@ from langchain_community.document_loaders import PyPDFLoader
|
|
10 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
11 |
from langchain_community.vectorstores import Chroma
|
12 |
from langchain.chains import ConversationalRetrievalChain
|
13 |
-
from langchain_community.embeddings import HuggingFaceEmbeddings
|
14 |
from langchain_community.llms import HuggingFacePipeline
|
15 |
from langchain.chains import ConversationChain
|
16 |
from langchain.memory import ConversationBufferMemory
|
@@ -18,9 +17,7 @@ from langchain_community.llms import HuggingFaceEndpoint
|
|
18 |
import torch
|
19 |
api_token = os.getenv("HF_TOKEN")
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
list_llm = ["meta-llama/Meta-Llama-3-8B-Instruct", "mistralai/Mistral-7B-Instruct-v0.3"]
|
24 |
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
|
25 |
|
26 |
# Load PDF document and create doc splits
|
@@ -66,39 +63,20 @@ def create_db(splits, collection_name, db_type):
|
|
66 |
|
67 |
return vectordb
|
68 |
|
69 |
-
# Load vector database
|
70 |
-
def load_db():
|
71 |
-
embedding = HuggingFaceEmbeddings()
|
72 |
-
vectordb = Chroma(
|
73 |
-
embedding_function=embedding)
|
74 |
-
return vectordb
|
75 |
-
|
76 |
# Initialize langchain LLM chain
|
77 |
-
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
78 |
progress(0.1, desc="Initializing HF tokenizer...")
|
79 |
|
80 |
progress(0.5, desc="Initializing HF Hub...")
|
81 |
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
)
|
91 |
-
|
92 |
-
else:
|
93 |
-
|
94 |
-
llm = HuggingFaceEndpoint(
|
95 |
-
repo_id=llm_model,
|
96 |
-
huggingfacehub_api_token=api_token,
|
97 |
-
temperature=temperature,
|
98 |
-
max_new_tokens=max_tokens,
|
99 |
-
top_k=top_k,
|
100 |
-
)
|
101 |
-
|
102 |
progress(0.75, desc="Defining buffer memory...")
|
103 |
memory = ConversationBufferMemory(
|
104 |
memory_key="chat_history",
|
@@ -110,18 +88,19 @@ def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, pr
|
|
110 |
qa_chain = ConversationalRetrievalChain.from_llm(
|
111 |
llm,
|
112 |
retriever=retriever,
|
113 |
-
chain_type="stuff",
|
114 |
memory=memory,
|
115 |
return_source_documents=True,
|
116 |
verbose=False,
|
117 |
)
|
|
|
118 |
progress(0.9, desc="Done!")
|
119 |
return qa_chain
|
120 |
|
121 |
# Generate collection name for vector database
|
122 |
def create_collection_name(filepath):
|
123 |
collection_name = Path(filepath).stem
|
124 |
-
collection_name = collection_name.replace(" ", "-")
|
125 |
collection_name = unidecode(collection_name)
|
126 |
collection_name = re.sub('[^A-Za-z0-9]+', '-', collection_name)
|
127 |
collection_name = collection_name[:50]
|
@@ -147,10 +126,10 @@ def initialize_database(list_file_obj, chunk_size, chunk_overlap, db_type, progr
|
|
147 |
progress(0.9, desc="Done!")
|
148 |
return vector_db, collection_name, "Complete!"
|
149 |
|
150 |
-
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
151 |
llm_name = list_llm[llm_option]
|
152 |
print("llm_name: ", llm_name)
|
153 |
-
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
|
154 |
return qa_chain, "Complete!"
|
155 |
|
156 |
def format_chat_history(message, chat_history):
|
@@ -162,7 +141,6 @@ def format_chat_history(message, chat_history):
|
|
162 |
|
163 |
def conversation(qa_chain, message, history):
|
164 |
formatted_chat_history = format_chat_history(message, history)
|
165 |
-
|
166 |
response = qa_chain({"question": message, "chat_history": formatted_chat_history})
|
167 |
response_answer = response["answer"]
|
168 |
if "Helpful Answer:" in response_answer:
|
@@ -178,6 +156,13 @@ def conversation(qa_chain, message, history):
|
|
178 |
new_history = history + [(message, response_answer)]
|
179 |
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
|
180 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
def upload_file(file_obj):
|
182 |
list_file_path = []
|
183 |
for file in file_obj:
|
@@ -189,7 +174,9 @@ def demo():
|
|
189 |
vector_db = gr.State()
|
190 |
qa_chain = gr.State()
|
191 |
collection_name = gr.State()
|
192 |
-
|
|
|
|
|
193 |
gr.Markdown(
|
194 |
"""<center><h2>PDF-based chatbot</center></h2>
|
195 |
<h3>Ask any questions about your PDF documents</h3>""")
|
@@ -197,7 +184,7 @@ def demo():
|
|
197 |
"""<b>Note:</b> Esta é a lucIAna, primeira Versão da IA para seus PDF documentos.
|
198 |
Este chatbot leva em consideração perguntas anteriores ao gerar respostas (por meio de memória conversacional) e inclui referências a documentos para fins de clareza.
|
199 |
""")
|
200 |
-
|
201 |
with gr.Tab("Step 1 - Upload PDF"):
|
202 |
with gr.Row():
|
203 |
document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload your PDF documents (single or multiple)")
|
@@ -215,7 +202,13 @@ def demo():
|
|
215 |
with gr.Row():
|
216 |
db_btn = gr.Button("Generate vector database")
|
217 |
|
218 |
-
with gr.Tab("Step 3 -
|
|
|
|
|
|
|
|
|
|
|
|
|
219 |
with gr.Row():
|
220 |
llm_btn = gr.Radio(list_llm_simple,
|
221 |
label="LLM models", value=list_llm_simple[0], type="index", info="Choose your LLM model")
|
@@ -231,7 +224,7 @@ def demo():
|
|
231 |
with gr.Row():
|
232 |
qachain_btn = gr.Button("Initialize Question Answering chain")
|
233 |
|
234 |
-
with gr.Tab("Step
|
235 |
chatbot = gr.Chatbot(height=300)
|
236 |
with gr.Accordion("Advanced - Document references", open=False):
|
237 |
with gr.Row():
|
@@ -248,19 +241,30 @@ def demo():
|
|
248 |
with gr.Row():
|
249 |
submit_btn = gr.Button("Submit message")
|
250 |
clear_btn = gr.ClearButton([msg, chatbot], value="Clear conversation")
|
251 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
252 |
# Preprocessing events
|
253 |
db_btn.click(initialize_database,
|
254 |
inputs=[document, slider_chunk_size, slider_chunk_overlap, db_type_radio],
|
255 |
outputs=[vector_db, collection_name, db_progress])
|
|
|
|
|
|
|
256 |
qachain_btn.click(initialize_LLM,
|
257 |
-
inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db],
|
258 |
outputs=[qa_chain, llm_progress]).then(lambda:[None,"",0,"",0,"",0],
|
259 |
inputs=None,
|
260 |
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
|
261 |
queue=False)
|
262 |
|
263 |
-
# Chatbot events
|
264 |
msg.submit(conversation,
|
265 |
inputs=[qa_chain, msg, chatbot],
|
266 |
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
|
@@ -273,7 +277,18 @@ def demo():
|
|
273 |
inputs=None,
|
274 |
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
|
275 |
queue=False)
|
276 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
277 |
|
278 |
if __name__ == "__main__":
|
279 |
-
demo()
|
|
|
1 |
import gradio as gr
|
2 |
import os
|
|
|
3 |
from pathlib import Path
|
4 |
import re
|
5 |
from unidecode import unidecode
|
|
|
9 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
10 |
from langchain_community.vectorstores import Chroma
|
11 |
from langchain.chains import ConversationalRetrievalChain
|
12 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
13 |
from langchain_community.llms import HuggingFacePipeline
|
14 |
from langchain.chains import ConversationChain
|
15 |
from langchain.memory import ConversationBufferMemory
|
|
|
17 |
import torch
|
18 |
api_token = os.getenv("HF_TOKEN")
|
19 |
|
20 |
+
list_llm = ["meta-llama/Meta-Llama-3-8B-Instruct", "mistralai/Mistral-7B-Instruct"]
|
|
|
|
|
21 |
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
|
22 |
|
23 |
# Load PDF document and create doc splits
|
|
|
63 |
|
64 |
return vectordb
|
65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
# Initialize langchain LLM chain
|
67 |
+
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, initial_prompt, progress=gr.Progress()):
|
68 |
progress(0.1, desc="Initializing HF tokenizer...")
|
69 |
|
70 |
progress(0.5, desc="Initializing HF Hub...")
|
71 |
|
72 |
+
llm = HuggingFaceEndpoint(
|
73 |
+
repo_id=llm_model,
|
74 |
+
huggingfacehub_api_token=api_token,
|
75 |
+
temperature=temperature,
|
76 |
+
max_new_tokens=max_tokens,
|
77 |
+
top_k=top_k,
|
78 |
+
)
|
79 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
progress(0.75, desc="Defining buffer memory...")
|
81 |
memory = ConversationBufferMemory(
|
82 |
memory_key="chat_history",
|
|
|
88 |
qa_chain = ConversationalRetrievalChain.from_llm(
|
89 |
llm,
|
90 |
retriever=retriever,
|
91 |
+
chain_type="stuff",
|
92 |
memory=memory,
|
93 |
return_source_documents=True,
|
94 |
verbose=False,
|
95 |
)
|
96 |
+
qa_chain({"question": initial_prompt}) # Initialize with the initial prompt
|
97 |
progress(0.9, desc="Done!")
|
98 |
return qa_chain
|
99 |
|
100 |
# Generate collection name for vector database
|
101 |
def create_collection_name(filepath):
|
102 |
collection_name = Path(filepath).stem
|
103 |
+
collection_name = collection_name.replace(" ", "-")
|
104 |
collection_name = unidecode(collection_name)
|
105 |
collection_name = re.sub('[^A-Za-z0-9]+', '-', collection_name)
|
106 |
collection_name = collection_name[:50]
|
|
|
126 |
progress(0.9, desc="Done!")
|
127 |
return vector_db, collection_name, "Complete!"
|
128 |
|
129 |
+
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, initial_prompt, progress=gr.Progress()):
|
130 |
llm_name = list_llm[llm_option]
|
131 |
print("llm_name: ", llm_name)
|
132 |
+
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, initial_prompt, progress)
|
133 |
return qa_chain, "Complete!"
|
134 |
|
135 |
def format_chat_history(message, chat_history):
|
|
|
141 |
|
142 |
def conversation(qa_chain, message, history):
|
143 |
formatted_chat_history = format_chat_history(message, history)
|
|
|
144 |
response = qa_chain({"question": message, "chat_history": formatted_chat_history})
|
145 |
response_answer = response["answer"]
|
146 |
if "Helpful Answer:" in response_answer:
|
|
|
156 |
new_history = history + [(message, response_answer)]
|
157 |
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
|
158 |
|
159 |
+
def conversation_no_doc(llm, message, history):
|
160 |
+
formatted_chat_history = format_chat_history(message, history)
|
161 |
+
response = llm({"question": message, "chat_history": formatted_chat_history})
|
162 |
+
response_answer = response["answer"]
|
163 |
+
new_history = history + [(message, response_answer)]
|
164 |
+
return llm, gr.update(value=""), new_history
|
165 |
+
|
166 |
def upload_file(file_obj):
|
167 |
list_file_path = []
|
168 |
for file in file_obj:
|
|
|
174 |
vector_db = gr.State()
|
175 |
qa_chain = gr.State()
|
176 |
collection_name = gr.State()
|
177 |
+
initial_prompt = gr.State()
|
178 |
+
llm_no_doc = gr.State()
|
179 |
+
|
180 |
gr.Markdown(
|
181 |
"""<center><h2>PDF-based chatbot</center></h2>
|
182 |
<h3>Ask any questions about your PDF documents</h3>""")
|
|
|
184 |
"""<b>Note:</b> Esta é a lucIAna, primeira Versão da IA para seus PDF documentos.
|
185 |
Este chatbot leva em consideração perguntas anteriores ao gerar respostas (por meio de memória conversacional) e inclui referências a documentos para fins de clareza.
|
186 |
""")
|
187 |
+
|
188 |
with gr.Tab("Step 1 - Upload PDF"):
|
189 |
with gr.Row():
|
190 |
document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload your PDF documents (single or multiple)")
|
|
|
202 |
with gr.Row():
|
203 |
db_btn = gr.Button("Generate vector database")
|
204 |
|
205 |
+
with gr.Tab("Step 3 - Set Initial Prompt"):
|
206 |
+
with gr.Row():
|
207 |
+
prompt_input = gr.Textbox(label="Initial Prompt", lines=5, value="Você é um advogado sênior, onde seu papel é analisar e trazer as informações sem inventar, dando a sua melhor opinião sempre trazendo contexto e referência. Aprenda o que é jurisprudência.")
|
208 |
+
with gr.Row():
|
209 |
+
set_prompt_btn = gr.Button("Set Prompt")
|
210 |
+
|
211 |
+
with gr.Tab("Step 4 - Initialize QA chain"):
|
212 |
with gr.Row():
|
213 |
llm_btn = gr.Radio(list_llm_simple,
|
214 |
label="LLM models", value=list_llm_simple[0], type="index", info="Choose your LLM model")
|
|
|
224 |
with gr.Row():
|
225 |
qachain_btn = gr.Button("Initialize Question Answering chain")
|
226 |
|
227 |
+
with gr.Tab("Step 5 - Chatbot with document"):
|
228 |
chatbot = gr.Chatbot(height=300)
|
229 |
with gr.Accordion("Advanced - Document references", open=False):
|
230 |
with gr.Row():
|
|
|
241 |
with gr.Row():
|
242 |
submit_btn = gr.Button("Submit message")
|
243 |
clear_btn = gr.ClearButton([msg, chatbot], value="Clear conversation")
|
244 |
+
|
245 |
+
with gr.Tab("Step 6 - Chatbot without document"):
|
246 |
+
chatbot_no_doc = gr.Chatbot(height=300)
|
247 |
+
with gr.Row():
|
248 |
+
msg_no_doc = gr.Textbox(placeholder="Type message to chat with lucIAna", container=True)
|
249 |
+
with gr.Row():
|
250 |
+
submit_btn_no_doc = gr.Button("Submit message")
|
251 |
+
clear_btn_no_doc = gr.ClearButton([msg_no_doc, chatbot_no_doc], value="Clear conversation")
|
252 |
+
|
253 |
# Preprocessing events
|
254 |
db_btn.click(initialize_database,
|
255 |
inputs=[document, slider_chunk_size, slider_chunk_overlap, db_type_radio],
|
256 |
outputs=[vector_db, collection_name, db_progress])
|
257 |
+
set_prompt_btn.click(lambda prompt: prompt,
|
258 |
+
inputs=prompt_input,
|
259 |
+
outputs=initial_prompt)
|
260 |
qachain_btn.click(initialize_LLM,
|
261 |
+
inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db, initial_prompt],
|
262 |
outputs=[qa_chain, llm_progress]).then(lambda:[None,"",0,"",0,"",0],
|
263 |
inputs=None,
|
264 |
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
|
265 |
queue=False)
|
266 |
|
267 |
+
# Chatbot events with document
|
268 |
msg.submit(conversation,
|
269 |
inputs=[qa_chain, msg, chatbot],
|
270 |
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
|
|
|
277 |
inputs=None,
|
278 |
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
|
279 |
queue=False)
|
280 |
+
|
281 |
+
# Chatbot events without document
|
282 |
+
submit_btn_no_doc.click(conversation_no_doc,
|
283 |
+
inputs=[llm_no_doc, msg_no_doc, chatbot_no_doc],
|
284 |
+
outputs=[llm_no_doc, msg_no_doc, chatbot_no_doc],
|
285 |
+
queue=False)
|
286 |
+
clear_btn_no_doc.click(lambda:[None,""],
|
287 |
+
inputs=None,
|
288 |
+
outputs=[chatbot_no_doc, msg_no_doc],
|
289 |
+
queue=False)
|
290 |
+
|
291 |
+
demo.queue().launch(debug=True, share=True)
|
292 |
|
293 |
if __name__ == "__main__":
|
294 |
+
demo()
|