Fecalisboa commited on
Commit
81255d9
·
verified ·
1 Parent(s): 289ac0c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +158 -1
app.py CHANGED
@@ -294,6 +294,34 @@ def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=gr.Pr
294
  progress(0.9, desc="Done!")
295
  return vector_db, collection_name, "Complete!"
296
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
297
  def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
298
  llm_name = list_llm[llm_option]
299
  print("llm_name: ",llm_name)
@@ -305,4 +333,133 @@ def format_chat_history(message, chat_history):
305
  for user_message, bot_message in chat_history:
306
  formatted_chat_history.append(f"User: {user_message}")
307
  formatted_chat_history.append(f"Assistant: {bot_message}")
308
- return formatted_chat_history
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
294
  progress(0.9, desc="Done!")
295
  return vector_db, collection_name, "Complete!"
296
 
297
+ # Initialize LlamaIndex parsing
298
+ def initialize_llama_index(file_obj):
299
+ documents = LlamaParse(result_type="markdown", api_key=api_token).load_data(file_obj[0].name)
300
+ node_parser = MarkdownElementNodeParser(llm=None, num_workers=8)
301
+ nodes = node_parser.get_nodes_from_documents(documents)
302
+ base_nodes, objects = node_parser.get_nodes_and_objects(nodes)
303
+
304
+ # Usando SimpleVectorStore para criar um índice vetorial
305
+ vector_store = SimpleVectorStore()
306
+ for node in base_nodes + objects:
307
+ vector_store.add(node)
308
+
309
+ # Criando um recuperador a partir do índice vetorial
310
+ index_ret = VectorIndexRetriever(vector_store=vector_store, top_k=15)
311
+
312
+ # Configurando o motor de consulta
313
+ reranker = FlagEmbeddingReranker(
314
+ top_n=5,
315
+ model="BAAI/bge-reranker-large"
316
+ )
317
+ recursive_query_engine = RetrieverQueryEngine(
318
+ retriever=index_ret,
319
+ node_postprocessors=[reranker],
320
+ verbose=False
321
+ )
322
+
323
+ return recursive_query_engine, "LlamaIndex parsing complete"
324
+
325
  def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
326
  llm_name = list_llm[llm_option]
327
  print("llm_name: ",llm_name)
 
333
  for user_message, bot_message in chat_history:
334
  formatted_chat_history.append(f"User: {user_message}")
335
  formatted_chat_history.append(f"Assistant: {bot_message}")
336
+ return formatted_chat_history
337
+
338
+ def conversation(qa_chain, message, history):
339
+ formatted_chat_history = format_chat_history(message, history)
340
+
341
+ response = qa_chain({"question": message, "chat_history": formatted_chat_history})
342
+ response_answer = response["answer"]
343
+ if "Helpful Answer:" in response_answer:
344
+ response_answer = response_answer.split("Helpful Answer:")[-1]
345
+ response_sources = response["source_documents"]
346
+ response_source1 = response_sources[0].page_content.strip()
347
+ response_source2 = response_sources[1].page_content.strip()
348
+ response_source3 = response_sources[2].page_content.strip()
349
+ response_source1_page = response_sources[0].metadata["page"] + 1
350
+ response_source2_page = response_sources[1].metadata["page"] + 1
351
+ response_source3_page = response_sources[2].metadata["page"] + 1
352
+
353
+ new_history = history + [(message, response_answer)]
354
+ return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
355
+
356
+ def upload_file(file_obj):
357
+ list_file_path = []
358
+ for file in file_obj:
359
+ list_file_path.append(file.name)
360
+ return list_file_path
361
+
362
+ def demo():
363
+ with gr.Blocks(theme="base") as demo:
364
+ vector_db = gr.State()
365
+ qa_chain = gr.State()
366
+ collection_name = gr.State()
367
+ llama_index_engine = gr.State()
368
+
369
+ gr.Markdown(
370
+ """<center><h2>PDF-based chatbot</center></h2>
371
+ <h3>Ask any questions about your PDF documents</h3>""")
372
+ gr.Markdown(
373
+ """<b>Note:</b> Esta é a lucIAna, primeira Versão da IA para seus PDF documentos.
374
+ Este chatbot leva em consideração perguntas anteriores ao gerar respostas (por meio de memória conversacional) e inclui referências a documentos para fins de clareza.
375
+ """)
376
+
377
+ with gr.Tab("Step 1 - Upload PDF"):
378
+ with gr.Row():
379
+ document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload your PDF documents (single or multiple)")
380
+
381
+ with gr.Tab("Step 2 - Process document"):
382
+ with gr.Row():
383
+ db_btn = gr.Radio(["ChromaDB"], label="Vector database type", value="ChromaDB", type="index", info="Choose your vector database")
384
+ with gr.Accordion("Advanced options - Document text splitter", open=False):
385
+ with gr.Row():
386
+ slider_chunk_size = gr.Slider(minimum=100, maximum=1000, value=600, step=20, label="Chunk size", info="Chunk size", interactive=True)
387
+ with gr.Row():
388
+ slider_chunk_overlap = gr.Slider(minimum=10, maximum=200, value=40, step=10, label="Chunk overlap", info="Chunk overlap", interactive=True)
389
+ with gr.Row():
390
+ db_progress = gr.Textbox(label="Vector database initialization", value="None")
391
+ with gr.Row():
392
+ db_btn = gr.Button("Generate vector database")
393
+
394
+ with gr.Tab("Step 3 - Initialize QA chain"):
395
+ with gr.Row():
396
+ llm_btn = gr.Radio(list_llm_simple,
397
+ label="LLM models", value=list_llm_simple[0], type="index", info="Choose your LLM model")
398
+ with gr.Accordion("Advanced options - LLM model", open=False):
399
+ with gr.Row():
400
+ slider_temperature = gr.Slider(minimum=0.01, maximum=1.0, value=0.7, step=0.1, label="Temperature", info="Model temperature", interactive=True)
401
+ with gr.Row():
402
+ slider_maxtokens = gr.Slider(minimum=224, maximum=4096, value=1024, step=32, label="Max Tokens", info="Model max tokens", interactive=True)
403
+ with gr.Row():
404
+ slider_topk = gr.Slider(minimum=1, maximum=10, value=3, step=1, label="top-k samples", info="Model top-k samples", interactive=True)
405
+ with gr.Row():
406
+ llm_progress = gr.Textbox(value="None", label="QA chain initialization")
407
+ with gr.Row():
408
+ qachain_btn = gr.Button("Initialize Question Answering chain")
409
+
410
+ with gr.Tab("Step 4 - LlamaIndex parsing"):
411
+ with gr.Row():
412
+ llama_index_btn = gr.Button("Parse with LlamaIndex")
413
+ with gr.Row():
414
+ llama_index_progress = gr.Textbox(label="LlamaIndex parsing status", value="None")
415
+
416
+ with gr.Tab("Step 5 - Chatbot"):
417
+ chatbot = gr.Chatbot(height=300)
418
+ with gr.Accordion("Advanced - Document references", open=False):
419
+ with gr.Row():
420
+ doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
421
+ source1_page = gr.Number(label="Page", scale=1)
422
+ with gr.Row():
423
+ doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20)
424
+ source2_page = gr.Number(label="Page", scale=1)
425
+ with gr.Row():
426
+ doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20)
427
+ source3_page = gr.Number(label="Page", scale=1)
428
+ with gr.Row():
429
+ msg = gr.Textbox(placeholder="Type message (e.g. 'What is this document about?')", container=True)
430
+ with gr.Row():
431
+ submit_btn = gr.Button("Submit message")
432
+ clear_btn = gr.ClearButton([msg, chatbot], value="Clear conversation")
433
+
434
+ # Preprocessing events
435
+ db_btn.click(initialize_database,
436
+ inputs=[document, slider_chunk_size, slider_chunk_overlap],
437
+ outputs=[vector_db, collection_name, db_progress])
438
+ qachain_btn.click(initialize_LLM,
439
+ inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db],
440
+ outputs=[qa_chain, llm_progress]).then(lambda:[None,"",0,"",0,"",0],
441
+ inputs=None,
442
+ outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
443
+ queue=False)
444
+ llama_index_btn.click(initialize_llama_index,
445
+ inputs=[document],
446
+ outputs=[llama_index_engine, llama_index_progress])
447
+
448
+ # Chatbot events
449
+ msg.submit(conversation,
450
+ inputs=[qa_chain, msg, chatbot],
451
+ outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
452
+ queue=False)
453
+ submit_btn.click(conversation,
454
+ inputs=[qa_chain, msg, chatbot],
455
+ outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
456
+ queue=False)
457
+ clear_btn.click(lambda:[None,"",0,"",0,"",0],
458
+ inputs=None,
459
+ outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
460
+ queue=False)
461
+ demo.queue().launch(debug=True)
462
+
463
+
464
+ if __name__ == "__main__":
465
+ demo()