Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -20,7 +20,7 @@ api_token = os.getenv("HF_TOKEN")
|
|
20 |
|
21 |
|
22 |
|
23 |
-
list_llm = ["meta-llama/Meta-Llama-3-8B-Instruct", "mistralai/Mistral-7B-Instruct-v0.3"
|
24 |
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
|
25 |
|
26 |
# Load PDF document and create doc splits
|
@@ -34,15 +34,36 @@ def load_doc(list_file_path, chunk_size, chunk_overlap):
|
|
34 |
return doc_splits
|
35 |
|
36 |
# Create vector database
|
37 |
-
def create_db(splits, collection_name):
|
38 |
embedding = HuggingFaceEmbeddings()
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
return vectordb
|
47 |
|
48 |
# Load vector database
|
@@ -67,14 +88,7 @@ def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, pr
|
|
67 |
max_new_tokens=max_tokens,
|
68 |
top_k=top_k,
|
69 |
)
|
70 |
-
|
71 |
-
llm = HuggingFaceEndpoint(
|
72 |
-
repo_id=llm_model,
|
73 |
-
huggingfacehub_api_token=api_token,
|
74 |
-
temperature=temperature,
|
75 |
-
max_new_tokens=max_tokens,
|
76 |
-
top_k=top_k,
|
77 |
-
)
|
78 |
else:
|
79 |
|
80 |
llm = HuggingFaceEndpoint(
|
@@ -122,14 +136,14 @@ def create_collection_name(filepath):
|
|
122 |
return collection_name
|
123 |
|
124 |
# Initialize database
|
125 |
-
def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()):
|
126 |
list_file_path = [x.name for x in list_file_obj if x is not None]
|
127 |
progress(0.1, desc="Creating collection name...")
|
128 |
collection_name = create_collection_name(list_file_path[0])
|
129 |
progress(0.25, desc="Loading document...")
|
130 |
doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap)
|
131 |
progress(0.5, desc="Generating vector database...")
|
132 |
-
vector_db = create_db(doc_splits, collection_name)
|
133 |
progress(0.9, desc="Done!")
|
134 |
return vector_db, collection_name, "Complete!"
|
135 |
|
@@ -190,7 +204,7 @@ def demo():
|
|
190 |
|
191 |
with gr.Tab("Step 2 - Process document"):
|
192 |
with gr.Row():
|
193 |
-
db_btn = gr.Radio(["ChromaDB"], label="Vector database type", value="ChromaDB", type="index", info="Choose your vector database")
|
194 |
with gr.Accordion("Advanced options - Document text splitter", open=False):
|
195 |
with gr.Row():
|
196 |
slider_chunk_size = gr.Slider(minimum=100, maximum=1000, value=600, step=20, label="Chunk size", info="Chunk size", interactive=True)
|
@@ -237,7 +251,7 @@ def demo():
|
|
237 |
|
238 |
# Preprocessing events
|
239 |
db_btn.click(initialize_database,
|
240 |
-
inputs=[document, slider_chunk_size, slider_chunk_overlap],
|
241 |
outputs=[vector_db, collection_name, db_progress])
|
242 |
qachain_btn.click(initialize_LLM,
|
243 |
inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db],
|
@@ -261,6 +275,5 @@ def demo():
|
|
261 |
queue=False)
|
262 |
demo.queue().launch(debug=True)
|
263 |
|
264 |
-
|
265 |
if __name__ == "__main__":
|
266 |
demo()
|
|
|
20 |
|
21 |
|
22 |
|
23 |
+
list_llm = ["meta-llama/Meta-Llama-3-8B-Instruct", "mistralai/Mistral-7B-Instruct-v0.3"]
|
24 |
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
|
25 |
|
26 |
# Load PDF document and create doc splits
|
|
|
34 |
return doc_splits
|
35 |
|
36 |
# Create vector database
|
37 |
+
def create_db(splits, collection_name, db_type):
|
38 |
embedding = HuggingFaceEmbeddings()
|
39 |
+
|
40 |
+
if db_type == "ChromaDB":
|
41 |
+
new_client = chromadb.EphemeralClient()
|
42 |
+
vectordb = Chroma.from_documents(
|
43 |
+
documents=splits,
|
44 |
+
embedding=embedding,
|
45 |
+
client=new_client,
|
46 |
+
collection_name=collection_name,
|
47 |
+
)
|
48 |
+
elif db_type == "FAISS":
|
49 |
+
vectordb = FAISS.from_documents(
|
50 |
+
documents=splits,
|
51 |
+
embedding=embedding
|
52 |
+
)
|
53 |
+
elif db_type == "ScaNN":
|
54 |
+
vectordb = ScaNN.from_documents(
|
55 |
+
documents=splits,
|
56 |
+
embedding=embedding
|
57 |
+
)
|
58 |
+
elif db_type == "Milvus":
|
59 |
+
vectordb = Milvus.from_documents(
|
60 |
+
documents=splits,
|
61 |
+
embedding=embedding,
|
62 |
+
collection_name=collection_name,
|
63 |
+
)
|
64 |
+
else:
|
65 |
+
raise ValueError(f"Unsupported vector database type: {db_type}")
|
66 |
+
|
67 |
return vectordb
|
68 |
|
69 |
# Load vector database
|
|
|
88 |
max_new_tokens=max_tokens,
|
89 |
top_k=top_k,
|
90 |
)
|
91 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
else:
|
93 |
|
94 |
llm = HuggingFaceEndpoint(
|
|
|
136 |
return collection_name
|
137 |
|
138 |
# Initialize database
|
139 |
+
def initialize_database(list_file_obj, chunk_size, chunk_overlap, db_type, progress=gr.Progress()):
|
140 |
list_file_path = [x.name for x in list_file_obj if x is not None]
|
141 |
progress(0.1, desc="Creating collection name...")
|
142 |
collection_name = create_collection_name(list_file_path[0])
|
143 |
progress(0.25, desc="Loading document...")
|
144 |
doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap)
|
145 |
progress(0.5, desc="Generating vector database...")
|
146 |
+
vector_db = create_db(doc_splits, collection_name, db_type)
|
147 |
progress(0.9, desc="Done!")
|
148 |
return vector_db, collection_name, "Complete!"
|
149 |
|
|
|
204 |
|
205 |
with gr.Tab("Step 2 - Process document"):
|
206 |
with gr.Row():
|
207 |
+
db_btn = gr.Radio(["ChromaDB", "FAISS", "ScaNN", "Milvus"], label="Vector database type", value="ChromaDB", type="index", info="Choose your vector database")
|
208 |
with gr.Accordion("Advanced options - Document text splitter", open=False):
|
209 |
with gr.Row():
|
210 |
slider_chunk_size = gr.Slider(minimum=100, maximum=1000, value=600, step=20, label="Chunk size", info="Chunk size", interactive=True)
|
|
|
251 |
|
252 |
# Preprocessing events
|
253 |
db_btn.click(initialize_database,
|
254 |
+
inputs=[document, slider_chunk_size, slider_chunk_overlap, db_btn],
|
255 |
outputs=[vector_db, collection_name, db_progress])
|
256 |
qachain_btn.click(initialize_LLM,
|
257 |
inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db],
|
|
|
275 |
queue=False)
|
276 |
demo.queue().launch(debug=True)
|
277 |
|
|
|
278 |
if __name__ == "__main__":
|
279 |
demo()
|