import gradio as gr import os from pathlib import Path import re from unidecode import unidecode import chromadb from langchain_community.vectorstores import FAISS, ScaNN, Milvus from langchain_community.document_loaders import PyPDFLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_community.vectorstores import Chroma from langchain.chains import ConversationalRetrievalChain from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_community.llms import HuggingFacePipeline from langchain.chains import ConversationChain from langchain.memory import ConversationBufferMemory from langchain_community.llms import HuggingFaceEndpoint import torch api_token = os.getenv("HF_TOKEN") list_llm = ["meta-llama/Meta-Llama-3-8B-Instruct", "mistralai/Mistral-7B-Instruct-v0.3"] list_llm_simple = [os.path.basename(llm) for llm in list_llm] # Load PDF document and create doc splits def load_doc(list_file_path, chunk_size, chunk_overlap): loaders = [PyPDFLoader(x) for x in list_file_path] pages = [] for loader in loaders: pages.extend(loader.load()) text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap) doc_splits = text_splitter.split_documents(pages) return doc_splits # Create vector database def create_db(splits, collection_name, db_type): embedding = HuggingFaceEmbeddings() if db_type == "ChromaDB": new_client = chromadb.EphemeralClient() vectordb = Chroma.from_documents( documents=splits, embedding=embedding, client=new_client, collection_name=collection_name, ) elif db_type == "FAISS": vectordb = FAISS.from_documents( documents=splits, embedding=embedding ) elif db_type == "ScaNN": vectordb = ScaNN.from_documents( documents=splits, embedding=embedding ) elif db_type == "Milvus": vectordb = Milvus.from_documents( documents=splits, embedding=embedding, collection_name=collection_name, ) else: raise ValueError(f"Unsupported vector database type: {db_type}") return vectordb # Initialize langchain LLM chain def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, initial_prompt, progress=gr.Progress()): progress(0.1, desc="Initializing HF tokenizer...") progress(0.5, desc="Initializing HF Hub...") llm = HuggingFaceEndpoint( repo_id=llm_model, huggingfacehub_api_token=api_token, temperature=temperature, max_new_tokens=max_tokens, top_k=top_k, ) progress(0.75, desc="Defining buffer memory...") memory = ConversationBufferMemory( memory_key="chat_history", output_key='answer', return_messages=True ) retriever = vector_db.as_retriever() progress(0.8, desc="Defining retrieval chain...") qa_chain = ConversationalRetrievalChain.from_llm( llm, retriever=retriever, chain_type="stuff", memory=memory, return_source_documents=True, verbose=False, ) qa_chain({"question": initial_prompt}) # Initialize with the initial prompt progress(0.9, desc="Done!") return qa_chain def initialize_llm_no_doc(llm_model, temperature, max_tokens, top_k, initial_prompt, progress=gr.Progress()): progress(0.1, desc="Initializing HF tokenizer...") progress(0.5, desc="Initializing HF Hub...") llm = HuggingFaceEndpoint( repo_id=llm_model, huggingfacehub_api_token=api_token, temperature=temperature, max_new_tokens=max_tokens, top_k=top_k, ) progress(0.75, desc="Defining buffer memory...") memory = ConversationBufferMemory( memory_key="chat_history", output_key='answer', return_messages=True ) conversation_chain = ConversationChain(llm=llm, memory=memory, verbose=False) conversation_chain({"question": initial_prompt}) progress(0.9, desc="Done!") return conversation_chain def format_chat_history(message, chat_history): formatted_chat_history = [] for user_message, bot_message in chat_history: formatted_chat_history.append(f"User: {user_message}") formatted_chat_history.append(f"Assistant: {bot_message}") return formatted_chat_history def conversation(qa_chain, message, history): formatted_chat_history = format_chat_history(message, history) response = qa_chain({"question": message, "chat_history": formatted_chat_history}) response_answer = response["answer"] if "Helpful Answer:" in response_answer: response_answer = response_answer.split("Helpful Answer:")[-1] response_sources = response["source_documents"] response_source1 = response_sources[0].page_content.strip() response_source2 = response_sources[1].page_content.strip() response_source3 = response_sources[2].page_content.strip() response_source1_page = response_sources[0].metadata["page"] + 1 response_source2_page = response_sources[1].metadata["page"] + 1 response_source3_page = response_sources[2].metadata["page"] + 1 new_history = history + [(message, response_answer)] return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page def conversation_no_doc(llm, message, history): formatted_chat_history = format_chat_history(message, history) response = llm({"question": message, "chat_history": formatted_chat_history}) response_answer = response["answer"] new_history = history + [(message, response_answer)] return llm, gr.update(value=""), new_history def upload_file(file_obj): list_file_path = [] for file in file_obj: list_file_path.append(file.name) return list_file_path def initialize_database(list_file_obj, chunk_size, chunk_overlap, db_type, progress=gr.Progress()): list_file_path = [x.name for x in list_file_obj if x is not None] progress(0.1, desc="Creating collection name...") collection_name = create_collection_name(list_file_path[0]) progress(0.25, desc="Loading document...") doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap) progress(0.5, desc="Generating vector database...") vector_db = create_db(doc_splits, collection_name, db_type) progress(0.9, desc="Done!") return vector_db, collection_name, "Complete!" def create_collection_name(filepath): collection_name = Path(filepath).stem collection_name = collection_name.replace(" ", "-") collection_name = unidecode(collection_name) collection_name = re.sub('[^A-Za-z0-9]+', '-', collection_name) collection_name = collection_name[:50] if len(collection_name) < 3: collection_name = collection_name + 'xyz' if not collection_name[0].isalnum(): collection_name = 'A' + collection_name[1:] if not collection_name[-1].isalnum(): collection_name = collection_name[:-1] + 'Z' print('Filepath: ', filepath) print('Collection name: ', collection_name) return collection_name def demo(): with gr.Blocks(theme="base") as demo: vector_db = gr.State() qa_chain = gr.State() collection_name = gr.State() initial_prompt = gr.State("") llm_no_doc = gr.State() gr.Markdown( """