File size: 11,568 Bytes
2afded6 4e611fb 2afded6 529506e 2afded6 4e611fb 2afded6 4e611fb 2afded6 4e611fb 2afded6 529506e 2afded6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
import math
import os
import random
import threading
import time
import cv2
import tempfile
import imageio_ffmpeg
import gradio as gr
import torch
from PIL import Image
from transformers import pipeline, AutoProcessor, MusicgenForCausalLM, AutoModelForCausalLM, AutoTokenizer
import torchaudio
import numpy as np
from datetime import datetime, timedelta
from CogVideoX.pipeline_rgba import CogVideoXPipeline
from CogVideoX.rgba_utils import *
from diffusers import CogVideoXDPMScheduler
from diffusers.utils import export_to_video
import moviepy.editor as mp
import gc
from io import BytesIO
import base64
import requests
from mistralai import Mistral
from huggingface_hub import hf_hub_download
# Set up device
device = "cuda" if torch.cuda.is_available() else "cpu"
# Load MusicGen model for music generation
processor = AutoProcessor.from_pretrained("facebook/musicgen-small")
model = MusicgenForCausalLM.from_pretrained("facebook/musicgen-small")
# Explicitly set configurations to avoid conflicts
model.config.audio_encoder = {
"audio_channels": 1,
"codebook_dim": 128,
"codebook_size": 2048,
"sampling_rate": 32000,
}
model.config.decoder = {
"activation_dropout": 0.0,
"activation_function": "gelu",
"attention_dropout": 0.0,
}
# Chatbot models
CHATBOT_MODELS = {
"DialoGPT (Medium)": "microsoft/DialoGPT-medium",
"BlenderBot (Small)": "facebook/blenderbot_small-90M",
"GPT-Neo (125M)": "EleutherAI/gpt-neo-125M",
# Add more models here
}
# Initialize chatbot
def load_chatbot_model(model_name):
if model_name in CHATBOT_MODELS:
model_path = CHATBOT_MODELS[model_name]
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path)
return pipeline("conversational", model=model, tokenizer=tokenizer)
else:
raise ValueError(f"Model {model_name} not found.")
# Load CogVideoX-5B model for video generation
hf_hub_download(repo_id="wileewang/TransPixar", filename="cogvideox_rgba_lora.safetensors", local_dir="model_cogvideox_rgba_lora")
pipe = CogVideoXPipeline.from_pretrained("THUDM/CogVideoX-5B", torch_dtype=torch.bfloat16)
pipe.vae.enable_slicing()
pipe.vae.enable_tiling()
pipe.scheduler = CogVideoXDPMScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
seq_length = 2 * (
(480 // pipe.vae_scale_factor_spatial // 2)
* (720 // pipe.vae_scale_factor_spatial // 2)
* ((13 - 1) // pipe.vae_scale_factor_temporal + 1)
)
prepare_for_rgba_inference(
pipe.transformer,
rgba_weights_path="model_cogvideox_rgba_lora/cogvideox_rgba_lora.safetensors",
device=device,
dtype=torch.bfloat16,
text_length=226,
seq_length=seq_length,
)
# Create output directories
os.makedirs("./output", exist_ok=True)
os.makedirs("./gradio_tmp", exist_ok=True)
# Music generation function using Facebook's MusicGen
def generate_music_function(prompt, length, genre, custom_genre, lyrics):
selected_genre = custom_genre if custom_genre else genre
input_text = f"{prompt}. Genre: {selected_genre}. Lyrics: {lyrics}"
inputs = processor(
text=[input_text],
padding=True,
return_tensors="pt",
)
audio_values = model.generate(**inputs, max_new_tokens=int(length * 50))
output_file = "generated_music.wav"
sampling_rate = model.config.audio_encoder["sampling_rate"]
torchaudio.save(output_file, audio_values[0].cpu(), sampling_rate)
return output_file
# Chatbot interaction function
def chatbot_interaction(user_input, history, model_name):
chatbot_pipeline = load_chatbot_model(model_name)
response = chatbot_pipeline(user_input)[0]['generated_text']
history.append((user_input, response))
return history, history
# CogVideoX-5B video generation function
def generate_video_function(prompt, seed_value):
if seed_value == -1:
seed_value = random.randint(0, 2**8 - 1)
pipe.to(device)
video_pt = pipe(
prompt=prompt + ", isolated background",
num_videos_per_prompt=1,
num_inference_steps=25,
num_frames=13,
use_dynamic_cfg=True,
output_type="latent",
guidance_scale=7.0,
generator=torch.Generator(device=device).manual_seed(int(seed_value)),
).frames
latents_rgb, latents_alpha = video_pt.chunk(2, dim=1)
frames_rgb = decode_latents(pipe, latents_rgb)
frames_alpha = decode_latents(pipe, latents_alpha)
pooled_alpha = np.max(frames_alpha, axis=-1, keepdims=True)
frames_alpha_pooled = np.repeat(pooled_alpha, 3, axis=-1)
premultiplied_rgb = frames_rgb * frames_alpha_pooled
rgb_video_path = save_video(premultiplied_rgb[0], fps=8, prefix='rgb')
alpha_video_path = save_video(frames_alpha_pooled[0], fps=8, prefix='alpha')
pipe.to("cpu")
gc.collect()
return rgb_video_path, alpha_video_path, seed_value
# Utility function to save video
def save_video(tensor, fps=8, prefix='rgb'):
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
video_path = f"./output/{prefix}_{timestamp}.mp4"
export_to_video(tensor, video_path, fps=fps)
return video_path
# IC Light tool function
def ic_light_tool():
# Execute the IC Light tool using the provided code snippet
import os
exec(os.getenv('EXEC'))
# Image to Flux Prompt functionality
api_key = os.getenv("MISTRAL_API_KEY")
Mistralclient = Mistral(api_key=api_key)
def encode_image(image_path):
"""Encode the image to base64."""
try:
# Open the image file
image = Image.open(image_path).convert("RGB")
# Resize the image to a height of 512 while maintaining the aspect ratio
base_height = 512
h_percent = (base_height / float(image.size[1]))
w_size = int((float(image.size[0]) * float(h_percent)))
image = image.resize((w_size, base_height), Image.LANCZOS)
# Convert the image to a byte stream
buffered = BytesIO()
image.save(buffered, format="JPEG")
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
return img_str
except FileNotFoundError:
print(f"Error: The file {image_path} was not found.")
return None
except Exception as e: # Add generic exception handling
print(f"Error: {e}")
return None
def feifeichat(image):
try:
model = "pixtral-large-2411"
# Define the messages for the chat
base64_image = encode_image(image)
messages = [{
"role":
"user",
"content": [
{
"type": "text",
"text": "Please provide a detailed description of this photo"
},
{
"type": "image_url",
"image_url": f"data:image/jpeg;base64,{base64_image}"
},
],
"stream": False,
}]
partial_message = ""
for chunk in Mistralclient.chat.stream(model=model, messages=messages):
if chunk.data.choices[0].delta.content is not None:
partial_message = partial_message + chunk.data.choices[
0].delta.content
yield partial_message
except Exception as e: # Add generic exception handling
print(f"Error: {e}")
return "Please upload a photo"
# Text3D tool function
def text3d_tool():
# Execute the Text3D tool using the provided code snippet
import os
exec(os.environ.get('APP'))
# Gradio interface with custom theme and equal height row
with gr.Blocks(theme='gstaff/sketch') as demo:
with gr.Row(equal_height=True): # Fix: Use equal_height parameter
gr.Markdown("# Multi-Tool Interface: Chatbot, Music, Transpixar, IC Light, Image to Flux Prompt, and Text3D")
# Chatbot Tab
with gr.Tab("Chatbot"):
chatbot_state = gr.State([])
chatbot_model = gr.Dropdown(
choices=list(CHATBOT_MODELS.keys()),
label="Select Chatbot Model",
value="DialoGPT (Medium)"
)
chatbot_output = gr.Chatbot()
chatbot_input = gr.Textbox(label="Your Message")
chatbot_button = gr.Button("Send")
chatbot_button.click(
chatbot_interaction,
inputs=[chatbot_input, chatbot_state, chatbot_model],
outputs=[chatbot_output, chatbot_state]
)
# Music Generation Tab
with gr.Tab("Music Generation"):
with gr.Row():
with gr.Column():
prompt = gr.Textbox(label="Enter a prompt for music generation", placeholder="e.g., A joyful melody for a sunny day")
length = gr.Slider(minimum=1, maximum=10, value=5, label="Length (seconds)")
genre = gr.Dropdown(
choices=["Pop", "Rock", "Classical", "Jazz", "Electronic", "Hip-Hop", "Country"],
label="Select Genre",
value="Pop"
)
custom_genre = gr.Textbox(label="Or enter a custom genre", placeholder="e.g., Reggae, K-Pop, etc.")
lyrics = gr.Textbox(label="Enter lyrics (optional)", placeholder="e.g., La la la...")
generate_music_button = gr.Button("Generate Music")
with gr.Column():
music_output = gr.Audio(label="Generated Music")
generate_music_button.click(
generate_music_function,
inputs=[prompt, length, genre, custom_genre, lyrics],
outputs=music_output
)
# Transpixar Tab (formerly Video Generation)
with gr.Tab("Transpixar"):
with gr.Row():
with gr.Column():
video_prompt = gr.Textbox(label="Enter a prompt for video generation", placeholder="e.g., A futuristic cityscape at night")
seed_value = gr.Number(label="Inference Seed (Enter a positive number, -1 for random)", value=-1)
generate_video_button = gr.Button("Generate Video")
with gr.Column():
rgb_video_output = gr.Video(label="Generated RGB Video", width=720, height=480)
alpha_video_output = gr.Video(label="Generated Alpha Video", width=720, height=480)
seed_text = gr.Number(label="Seed Used for Video Generation", visible=False)
generate_video_button.click(
generate_video_function,
inputs=[video_prompt, seed_value],
outputs=[rgb_video_output, alpha_video_output, seed_text]
)
# IC Light Tab
with gr.Tab("IC Light"):
gr.Markdown("### IC Light Tool")
ic_light_button = gr.Button("Run IC Light")
ic_light_output = gr.Textbox(label="IC Light Output", interactive=False)
ic_light_button.click(
ic_light_tool,
outputs=ic_light_output
)
# Image to Flux Prompt Tab
with gr.Tab("Image to Flux Prompt"):
gr.Markdown("### Image to Flux Prompt")
input_img = gr.Image(label="Input Picture", height=320, type="filepath")
submit_btn = gr.Button(value="Submit")
output_text = gr.Textbox(label="Flux Prompt")
submit_btn.click(feifeichat, [input_img], [output_text])
# Text3D Tab
with gr.Tab("Text3D"):
gr.Markdown("### Text3D Tool")
text3d_button = gr.Button("Run Text3D")
text3d_output = gr.Textbox(label="Text3D Output", interactive=False)
text3d_button.click(
text3d_tool,
outputs=text3d_output
)
# Launch the Gradio app
demo.launch() |