Spaces:
Running
Running
File size: 5,274 Bytes
e538a38 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
import type { Wllama } from "@wllama/wllama";
import type { ChatMessage } from "gpt-tokenizer/GptEncoding";
import { addLogEntry } from "./logEntries";
import {
getQuery,
getSettings,
getTextGenerationState,
updateModelLoadingProgress,
updateModelSizeInMegabytes,
updateResponse,
updateTextGenerationState,
} from "./pubSub";
import {
ChatGenerationError,
canStartResponding,
defaultContextSize,
getFormattedSearchResults,
} from "./textGenerationUtilities";
import type { WllamaModel } from "./wllama";
type ProgressCallback = ({
loaded,
total,
}: {
loaded: number;
total: number;
}) => void;
export async function generateTextWithWllama(): Promise<void> {
if (!getSettings().enableAiResponse) return;
try {
const response = await generateWithWllama({
input: getQuery(),
onUpdate: updateResponse,
shouldCheckCanRespond: true,
});
updateResponse(response);
} catch (error) {
addLogEntry(
`Text generation failed: ${
error instanceof Error ? error.message : "Unknown error"
}`,
);
throw error;
}
}
export async function generateChatWithWllama(
messages: ChatMessage[],
onUpdate: (partialResponse: string) => void,
): Promise<string> {
const lastMessage = messages[messages.length - 1];
if (!lastMessage) throw new Error("No messages provided for chat generation");
return generateWithWllama({
input: lastMessage.content,
onUpdate,
shouldCheckCanRespond: false,
});
}
interface WllamaConfig {
input: string;
onUpdate: (text: string) => void;
shouldCheckCanRespond?: boolean;
}
async function generateWithWllama({
input,
onUpdate,
shouldCheckCanRespond = false,
}: WllamaConfig): Promise<string> {
let loadingPercentage = 0;
let wllamaInstance: Wllama | undefined;
const abortController = new AbortController();
try {
const progressCallback: ProgressCallback | undefined = shouldCheckCanRespond
? ({ loaded, total }) => {
const progressPercentage = Math.round((loaded / total) * 100);
if (loadingPercentage !== progressPercentage) {
loadingPercentage = progressPercentage;
updateModelLoadingProgress(progressPercentage);
}
}
: undefined;
const { wllama, model } = await initializeWllamaInstance(progressCallback);
wllamaInstance = wllama;
if (shouldCheckCanRespond) {
await canStartResponding();
updateTextGenerationState("preparingToGenerate");
}
let streamedMessage = "";
const stream = await wllama.createChatCompletion(
model.getMessages(
input,
getFormattedSearchResults(model.shouldIncludeUrlsOnPrompt),
),
{
nPredict: defaultContextSize,
stopTokens: model.stopTokens,
sampling: model.getSampling(),
stream: true,
abortSignal: abortController.signal,
},
);
for await (const chunk of stream) {
if (shouldCheckCanRespond) {
if (getTextGenerationState() === "interrupted") {
abortController.abort();
throw new ChatGenerationError("Chat generation interrupted");
}
if (getTextGenerationState() !== "generating") {
updateTextGenerationState("generating");
}
}
streamedMessage = handleWllamaCompletion(
model,
chunk.currentText,
() => abortController.abort(),
onUpdate,
);
}
return streamedMessage;
} catch (error) {
addLogEntry(
`Wllama generation failed: ${
error instanceof Error ? error.message : "Unknown error"
}`,
);
throw error;
} finally {
if (wllamaInstance) {
await wllamaInstance.exit().catch((error) => {
addLogEntry(
`Failed to cleanup Wllama instance: ${
error instanceof Error ? error.message : "Unknown error"
}`,
);
});
}
}
}
async function initializeWllamaInstance(progressCallback?: ProgressCallback) {
const { initializeWllama, wllamaModels } = await import("./wllama");
const model = wllamaModels[getSettings().wllamaModelId];
updateModelSizeInMegabytes(model.fileSizeInMegabytes);
const wllama = await initializeWllama(model.hfRepoId, model.hfFilePath, {
wllama: {
suppressNativeLog: true,
allowOffline: true,
},
model: {
n_threads: getSettings().cpuThreads,
n_ctx: model.contextSize,
n_batch: 512,
cache_type_k: model.cacheTypeK,
cache_type_v: model.cacheTypeV,
embeddings: false,
progressCallback,
},
});
return { wllama, model };
}
function handleWllamaCompletion(
model: WllamaModel,
currentText: string,
abortSignal: () => void,
onUpdate: (text: string) => void,
): string {
if (!model.stopStrings?.length) {
onUpdate(currentText);
return currentText;
}
const stopIndex = model.stopStrings.findIndex((stopString) =>
currentText.slice(-(stopString.length * 2)).includes(stopString),
);
if (stopIndex !== -1) {
abortSignal();
const cleanedText = currentText.slice(
0,
-model.stopStrings[stopIndex].length,
);
onUpdate(cleanedText);
return cleanedText;
}
onUpdate(currentText);
return currentText;
}
|