File size: 5,274 Bytes
e538a38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import type { Wllama } from "@wllama/wllama";
import type { ChatMessage } from "gpt-tokenizer/GptEncoding";
import { addLogEntry } from "./logEntries";
import {
  getQuery,
  getSettings,
  getTextGenerationState,
  updateModelLoadingProgress,
  updateModelSizeInMegabytes,
  updateResponse,
  updateTextGenerationState,
} from "./pubSub";
import {
  ChatGenerationError,
  canStartResponding,
  defaultContextSize,
  getFormattedSearchResults,
} from "./textGenerationUtilities";
import type { WllamaModel } from "./wllama";

type ProgressCallback = ({
  loaded,
  total,
}: {
  loaded: number;
  total: number;
}) => void;

export async function generateTextWithWllama(): Promise<void> {
  if (!getSettings().enableAiResponse) return;

  try {
    const response = await generateWithWllama({
      input: getQuery(),
      onUpdate: updateResponse,
      shouldCheckCanRespond: true,
    });
    updateResponse(response);
  } catch (error) {
    addLogEntry(
      `Text generation failed: ${
        error instanceof Error ? error.message : "Unknown error"
      }`,
    );
    throw error;
  }
}

export async function generateChatWithWllama(
  messages: ChatMessage[],
  onUpdate: (partialResponse: string) => void,
): Promise<string> {
  const lastMessage = messages[messages.length - 1];
  if (!lastMessage) throw new Error("No messages provided for chat generation");

  return generateWithWllama({
    input: lastMessage.content,
    onUpdate,
    shouldCheckCanRespond: false,
  });
}

interface WllamaConfig {
  input: string;
  onUpdate: (text: string) => void;
  shouldCheckCanRespond?: boolean;
}

async function generateWithWllama({
  input,
  onUpdate,
  shouldCheckCanRespond = false,
}: WllamaConfig): Promise<string> {
  let loadingPercentage = 0;
  let wllamaInstance: Wllama | undefined;
  const abortController = new AbortController();

  try {
    const progressCallback: ProgressCallback | undefined = shouldCheckCanRespond
      ? ({ loaded, total }) => {
          const progressPercentage = Math.round((loaded / total) * 100);
          if (loadingPercentage !== progressPercentage) {
            loadingPercentage = progressPercentage;
            updateModelLoadingProgress(progressPercentage);
          }
        }
      : undefined;

    const { wllama, model } = await initializeWllamaInstance(progressCallback);
    wllamaInstance = wllama;

    if (shouldCheckCanRespond) {
      await canStartResponding();
      updateTextGenerationState("preparingToGenerate");
    }

    let streamedMessage = "";

    const stream = await wllama.createChatCompletion(
      model.getMessages(
        input,
        getFormattedSearchResults(model.shouldIncludeUrlsOnPrompt),
      ),
      {
        nPredict: defaultContextSize,
        stopTokens: model.stopTokens,
        sampling: model.getSampling(),
        stream: true,
        abortSignal: abortController.signal,
      },
    );

    for await (const chunk of stream) {
      if (shouldCheckCanRespond) {
        if (getTextGenerationState() === "interrupted") {
          abortController.abort();
          throw new ChatGenerationError("Chat generation interrupted");
        }

        if (getTextGenerationState() !== "generating") {
          updateTextGenerationState("generating");
        }
      }

      streamedMessage = handleWllamaCompletion(
        model,
        chunk.currentText,
        () => abortController.abort(),
        onUpdate,
      );
    }

    return streamedMessage;
  } catch (error) {
    addLogEntry(
      `Wllama generation failed: ${
        error instanceof Error ? error.message : "Unknown error"
      }`,
    );
    throw error;
  } finally {
    if (wllamaInstance) {
      await wllamaInstance.exit().catch((error) => {
        addLogEntry(
          `Failed to cleanup Wllama instance: ${
            error instanceof Error ? error.message : "Unknown error"
          }`,
        );
      });
    }
  }
}

async function initializeWllamaInstance(progressCallback?: ProgressCallback) {
  const { initializeWllama, wllamaModels } = await import("./wllama");
  const model = wllamaModels[getSettings().wllamaModelId];

  updateModelSizeInMegabytes(model.fileSizeInMegabytes);

  const wllama = await initializeWllama(model.hfRepoId, model.hfFilePath, {
    wllama: {
      suppressNativeLog: true,
      allowOffline: true,
    },
    model: {
      n_threads: getSettings().cpuThreads,
      n_ctx: model.contextSize,
      n_batch: 512,
      cache_type_k: model.cacheTypeK,
      cache_type_v: model.cacheTypeV,
      embeddings: false,
      progressCallback,
    },
  });

  return { wllama, model };
}

function handleWllamaCompletion(
  model: WllamaModel,
  currentText: string,
  abortSignal: () => void,
  onUpdate: (text: string) => void,
): string {
  if (!model.stopStrings?.length) {
    onUpdate(currentText);
    return currentText;
  }

  const stopIndex = model.stopStrings.findIndex((stopString) =>
    currentText.slice(-(stopString.length * 2)).includes(stopString),
  );

  if (stopIndex !== -1) {
    abortSignal();
    const cleanedText = currentText.slice(
      0,
      -model.stopStrings[stopIndex].length,
    );
    onUpdate(cleanedText);
    return cleanedText;
  }

  onUpdate(currentText);
  return currentText;
}