Spaces:
Sleeping
Sleeping
update app
Browse files
app.py
CHANGED
@@ -5,13 +5,15 @@ from tqdm import tqdm
|
|
5 |
|
6 |
st.title("Coffe machine captioning app")
|
7 |
|
|
|
8 |
|
9 |
-
|
10 |
|
11 |
-
|
|
|
12 |
|
13 |
-
|
14 |
-
|
15 |
|
16 |
|
17 |
# Instructions for Tesseract OCR
|
@@ -19,11 +21,15 @@ st.sidebar.title("Instructions")
|
|
19 |
st.sidebar.write(
|
20 |
"""
|
21 |
1. Upload an image using the file uploader.
|
22 |
-
2. Wait for the app to process and
|
23 |
-
3. The
|
|
|
24 |
"""
|
25 |
)
|
26 |
|
|
|
|
|
|
|
27 |
|
28 |
prompt = (
|
29 |
f"Generate a caption for the following coffee maker image. The caption has to be of the following structure:\n"
|
@@ -51,15 +57,13 @@ if uploaded_image is not None:
|
|
51 |
)
|
52 |
|
53 |
|
54 |
-
st.
|
55 |
-
with tqdm(total=100) as pbar:
|
56 |
output = model.generate(**inputs, max_length=1000)
|
57 |
-
pbar.update(100)
|
58 |
|
59 |
out = processor.decode(output[0], skip_special_tokens=True)[len(prompt) :]
|
60 |
|
61 |
# Display the extracted text
|
62 |
-
st.text_area("Coffe machine
|
63 |
|
64 |
|
65 |
|
|
|
5 |
|
6 |
st.title("Coffe machine captioning app")
|
7 |
|
8 |
+
with st.spinner('Loading model and tokenizer...'):
|
9 |
|
10 |
+
model_id = "Fer14/paligemma_coffe_machine_caption"
|
11 |
|
12 |
+
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id)
|
13 |
+
processor = PaliGemmaProcessor.from_pretrained(model_id)
|
14 |
|
15 |
+
st.success('Model loaded!')
|
16 |
+
|
17 |
|
18 |
|
19 |
# Instructions for Tesseract OCR
|
|
|
21 |
st.sidebar.write(
|
22 |
"""
|
23 |
1. Upload an image using the file uploader.
|
24 |
+
2. Wait for the app to process and generate the caption.
|
25 |
+
3. The caption will be displayed in the text area.
|
26 |
+
4. Enjoy your caption!
|
27 |
"""
|
28 |
)
|
29 |
|
30 |
+
uploaded_image = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
31 |
+
|
32 |
+
|
33 |
|
34 |
prompt = (
|
35 |
f"Generate a caption for the following coffee maker image. The caption has to be of the following structure:\n"
|
|
|
57 |
)
|
58 |
|
59 |
|
60 |
+
with st.spinner('Generating caption...'):
|
|
|
61 |
output = model.generate(**inputs, max_length=1000)
|
|
|
62 |
|
63 |
out = processor.decode(output[0], skip_special_tokens=True)[len(prompt) :]
|
64 |
|
65 |
# Display the extracted text
|
66 |
+
st.text_area("Coffe machine caption", out, height=300)
|
67 |
|
68 |
|
69 |
|