Ferdi commited on
Commit
df3b04f
·
1 Parent(s): c4b265a

integrated langfuse

Browse files
Files changed (2) hide show
  1. requirements.txt +1 -0
  2. src/conversation.py +7 -2
requirements.txt CHANGED
@@ -2,6 +2,7 @@ docarray==0.39.1
2
  faiss-cpu==1.7.4
3
  gradio==4.8.0
4
  langchain==0.0.348
 
5
  openai==1.3.8
6
  pypdf==3.17.2
7
  tiktoken==0.5.2
 
2
  faiss-cpu==1.7.4
3
  gradio==4.8.0
4
  langchain==0.0.348
5
+ langfuse==2.5.0
6
  openai==1.3.8
7
  pypdf==3.17.2
8
  tiktoken==0.5.2
src/conversation.py CHANGED
@@ -3,9 +3,12 @@ from langchain.chains import ConversationalRetrievalChain
3
  from langchain.chat_models import ChatOpenAI
4
  from langchain.embeddings import OpenAIEmbeddings
5
  from langchain.prompts import PromptTemplate
 
6
  import os
7
 
8
  openai_api_key = os.environ.get("OPENAI_API_KEY")
 
 
9
 
10
  class Conversation_RAG:
11
  def __init__(self, model_name="gpt-3.5-turbo"):
@@ -17,7 +20,6 @@ class Conversation_RAG:
17
  return vectordb
18
 
19
  def create_model(self, max_new_tokens=512, temperature=0.1):
20
-
21
  llm = ChatOpenAI(
22
  openai_api_key=openai_api_key,
23
  model_name=self.model_name,
@@ -35,6 +37,8 @@ class Conversation_RAG:
35
  data: {question}\n
36
  """
37
 
 
 
38
  QCA_PROMPT = PromptTemplate(input_variables=["instruction", "context", "question"], template=template)
39
 
40
  qa = ConversationalRetrievalChain.from_llm(
@@ -43,6 +47,7 @@ class Conversation_RAG:
43
  retriever=vectordb.as_retriever(search_kwargs={"k": k_context}),
44
  combine_docs_chain_kwargs={"prompt": QCA_PROMPT},
45
  get_chat_history=lambda h: h,
46
- verbose=True
 
47
  )
48
  return qa
 
3
  from langchain.chat_models import ChatOpenAI
4
  from langchain.embeddings import OpenAIEmbeddings
5
  from langchain.prompts import PromptTemplate
6
+ from langfuse.callback import CallbackHandler
7
  import os
8
 
9
  openai_api_key = os.environ.get("OPENAI_API_KEY")
10
+ langfuse_public_key = os.environ.get("LANGFUSE_PUBLIC_KEY")
11
+ langfuse_secret_key = os.environ.get("LANGFUSE_SECRET_KEY")
12
 
13
  class Conversation_RAG:
14
  def __init__(self, model_name="gpt-3.5-turbo"):
 
20
  return vectordb
21
 
22
  def create_model(self, max_new_tokens=512, temperature=0.1):
 
23
  llm = ChatOpenAI(
24
  openai_api_key=openai_api_key,
25
  model_name=self.model_name,
 
37
  data: {question}\n
38
  """
39
 
40
+ handler = CallbackHandler(langfuse_public_key, langfuse_secret_key)
41
+
42
  QCA_PROMPT = PromptTemplate(input_variables=["instruction", "context", "question"], template=template)
43
 
44
  qa = ConversationalRetrievalChain.from_llm(
 
47
  retriever=vectordb.as_retriever(search_kwargs={"k": k_context}),
48
  combine_docs_chain_kwargs={"prompt": QCA_PROMPT},
49
  get_chat_history=lambda h: h,
50
+ verbose=True,
51
+ callbacks=[handler]
52
  )
53
  return qa