Spaces:
Sleeping
Sleeping
'firstcommit'
Browse files- EDA.py +68 -0
- list_cat_cols.txt +1 -0
- list_num_cols.txt +1 -0
- main.py +10 -0
- model_encoder.pkl +3 -0
- model_lin_reg.pkl +3 -0
- model_scaler.pkl +3 -0
- prediction.py +84 -0
EDA.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import seaborn as sns
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import plotly.express as px
|
6 |
+
from PIL import Image
|
7 |
+
|
8 |
+
st.set_page_config(
|
9 |
+
page_title='FIFA 20222 EDA',
|
10 |
+
layout = 'wide',
|
11 |
+
initial_sidebar_state='expanded'
|
12 |
+
)
|
13 |
+
|
14 |
+
def run():
|
15 |
+
|
16 |
+
# Membuat Title
|
17 |
+
st.title('FIFA 2022 Player Rating Prediction')
|
18 |
+
|
19 |
+
# Membuat Sub- Header
|
20 |
+
st.subheader('EDA untuk analisa Dataset FIFA 2022')
|
21 |
+
|
22 |
+
# Insert Gambar
|
23 |
+
image = Image.open('D:\Hacktiv8\Batch_020_RMT\Soccer.jpg')
|
24 |
+
st.image(image, caption='FIFA 2022')
|
25 |
+
|
26 |
+
# Menambahkan Deskripsi
|
27 |
+
st.write('Page ini dibuat oleh *Ferdiansyah Ersatiyo*')
|
28 |
+
st.write('# Halo') # seperti markdown pada google colab
|
29 |
+
|
30 |
+
# Membuat garis lurus
|
31 |
+
st.markdown('---')
|
32 |
+
|
33 |
+
# Magic Syntax
|
34 |
+
'''
|
35 |
+
Pada page kali ini, Penulis akan melakukan eksplorasi sederhana
|
36 |
+
Dataset yang digunakan adalah dataset FIFA 2022.
|
37 |
+
Dataset ini berasal dari web sofifa.com
|
38 |
+
'''
|
39 |
+
|
40 |
+
# show dataframe
|
41 |
+
data = pd.read_csv('https://raw.githubusercontent.com/ardhiraka/FSDS_Guidelines/master/p1/v3/w1/P1W1D1PM%20-%20Machine%20Learning%20Problem%20Framing.csv')
|
42 |
+
st.dataframe(data)
|
43 |
+
|
44 |
+
# Membuat Barplot
|
45 |
+
st.write('### Plot AttackingWorkRate')
|
46 |
+
fig = plt.figure(figsize=(15,5))
|
47 |
+
sns.countplot(x='AttackingWorkRate', data=data)
|
48 |
+
st.pyplot(fig)
|
49 |
+
|
50 |
+
# Membuat Histogram
|
51 |
+
st.write('### Histogram of Rating')
|
52 |
+
fig = plt.figure(figsize=(15,5))
|
53 |
+
sns.histplot(data['Overall'], bins= 30, kde=True)
|
54 |
+
st.pyplot(fig)
|
55 |
+
|
56 |
+
# Membuat Histogram berdasarkan input user
|
57 |
+
st.write('### Histogram berdasarkan input user')
|
58 |
+
pilihan = st.selectbox('pilih column : ',['Age','Weight','Height', 'ShootingTotal'])
|
59 |
+
fig = plt.figure(figsize=(15,5))
|
60 |
+
sns.histplot(data[pilihan], bins= 30, kde=True)
|
61 |
+
st.pyplot(fig)
|
62 |
+
# Membuat Plotly Plot
|
63 |
+
st.write('#### Plotly Plot - ValueEUR dengan Overall')
|
64 |
+
fig = px.scatter(data, x='ValueEUR', y='Overall', hover_data=['Name', 'Age'])
|
65 |
+
st.plotly_chart(fig)
|
66 |
+
|
67 |
+
if __name__== '__main__':
|
68 |
+
run()
|
list_cat_cols.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
["AttackingWorkRate", "DefensiveWorkRate"]
|
list_num_cols.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
["Age", "Height", "Weight", "Price", "PaceTotal", "ShootingTotal", "PassingTotal", "DribblingTotal", "DefendingTotal", "PhysicalityTotal"]
|
main.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import EDA
|
3 |
+
import prediction
|
4 |
+
|
5 |
+
navigation = st.sidebar.selectbox('Pilih Halaman : ', ('EDA','Predict A Player'))
|
6 |
+
|
7 |
+
if navigation == 'EDA':
|
8 |
+
EDA.run()
|
9 |
+
else:
|
10 |
+
prediction.run()
|
model_encoder.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0e95575e4f4325a8b2cc3751e09de7f29dec00be64588df3e060c44b17ef7e3d
|
3 |
+
size 572
|
model_lin_reg.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:61b5177c7282ce0ad6f60601b1b9c4b0e3b25ea7fb558db8f240077726a5b47a
|
3 |
+
size 595
|
model_scaler.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:886a94e22bb659265592ec555c491e70ab234b9e3aa33b0f2546b5d69ea2f0e6
|
3 |
+
size 1096
|
prediction.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import pickle
|
5 |
+
import json
|
6 |
+
|
7 |
+
# Load All Files
|
8 |
+
|
9 |
+
with open('model_lin_reg.pkl', 'rb') as file_1:
|
10 |
+
model_lin_reg = pickle.load(file_1)
|
11 |
+
|
12 |
+
with open('model_scaler.pkl', 'rb') as file_2:
|
13 |
+
model_scaler = pickle.load(file_2)
|
14 |
+
|
15 |
+
with open('model_encoder.pkl','rb') as file_3:
|
16 |
+
model_encoder = pickle.load(file_3)
|
17 |
+
|
18 |
+
with open('list_num_cols.txt', 'r') as file_4:
|
19 |
+
list_num_cols = json.load(file_4)
|
20 |
+
|
21 |
+
with open('list_cat_cols.txt', 'r') as file_5:
|
22 |
+
list_cat_cols = json.load(file_5)
|
23 |
+
|
24 |
+
def run():
|
25 |
+
|
26 |
+
with st.form('key=form_fifa_2022') :
|
27 |
+
name = st.text_input('Full Name', value='')
|
28 |
+
age = st.number_input('Age', min_value=16, max_value= 60, value=25, step=1, help= 'Usia Pemain')
|
29 |
+
Weight = st.number_input('Weight', min_value=50, max_value=150, value= 70)
|
30 |
+
Height = st.slider('Height', 150,250,170)
|
31 |
+
price = st.number_input ('price',min_value=0, max_value=10000000000, value= 0)
|
32 |
+
st.markdown('---')
|
33 |
+
|
34 |
+
attacking_work_rate = st.radio('Attacking Work Rate', ('Low', 'Medium', 'High'), index = 1)
|
35 |
+
defensive_work_rate = st.selectbox('Defensive Work Rate', ('Low', 'Medium', 'High'), index = 1)
|
36 |
+
st.markdown('---')
|
37 |
+
|
38 |
+
pace = st.number_input('Pace',min_value= 0, max_value= 100, value= 50)
|
39 |
+
shooting = st.number_input('shooting',min_value= 0, max_value= 100, value= 50)
|
40 |
+
passing = st.number_input('Passing',min_value= 0, max_value= 100, value= 50)
|
41 |
+
Dribbling = st.number_input('Dribbling',min_value= 0, max_value= 100, value= 50)
|
42 |
+
defending = st.number_input('defending',min_value= 0, max_value= 100, value= 50)
|
43 |
+
physicality = st.number_input('Physicality',min_value= 0, max_value= 100, value= 50)
|
44 |
+
|
45 |
+
|
46 |
+
submitted = st.form_submit_button('Predict')
|
47 |
+
|
48 |
+
|
49 |
+
data_inf = {
|
50 |
+
'Name': name,
|
51 |
+
'Age': age,
|
52 |
+
'Height': Height,
|
53 |
+
'Weight': Weight,
|
54 |
+
'Price': price,
|
55 |
+
'AttackingWorkRate': attacking_work_rate,
|
56 |
+
'DefensiveWorkRate': defensive_work_rate,
|
57 |
+
'PaceTotal': pace,
|
58 |
+
'ShootingTotal': shooting,
|
59 |
+
'PassingTotal': passing,
|
60 |
+
'DribblingTotal': Dribbling,
|
61 |
+
'DefendingTotal': defending,
|
62 |
+
'PhysicalityTotal': physicality
|
63 |
+
}
|
64 |
+
|
65 |
+
data_inf = pd.DataFrame([data_inf])
|
66 |
+
st.dataframe(data_inf)
|
67 |
+
|
68 |
+
if submitted:
|
69 |
+
# Split between Numerical Columns and Categorical Columns
|
70 |
+
data_inf_num = data_inf[list_num_cols]
|
71 |
+
data_inf_cat = data_inf[list_cat_cols]
|
72 |
+
|
73 |
+
# Feature Scaling and Feature Encoding
|
74 |
+
data_inf_num_scaled = model_scaler.transform(data_inf_num)
|
75 |
+
data_inf_cat_encoded = model_encoder.transform(data_inf_cat)
|
76 |
+
data_inf_final = np.concatenate([data_inf_num_scaled, data_inf_cat_encoded], axis=1)
|
77 |
+
|
78 |
+
# Predict using Linear Regression
|
79 |
+
y_pred_inf = model_lin_reg.predict(data_inf_final)
|
80 |
+
|
81 |
+
st.write('# Rating : ', str(int(y_pred_inf)))
|
82 |
+
|
83 |
+
if __name__== '__main__':
|
84 |
+
run()
|