import streamlit as st import pandas as pd import numpy as np import pickle import json # Load All Files with open('model_lin_reg.pkl', 'rb') as file_1: model_lin_reg = pickle.load(file_1) with open('model_scaler.pkl', 'rb') as file_2: model_scaler = pickle.load(file_2) with open('model_encoder.pkl','rb') as file_3: model_encoder = pickle.load(file_3) with open('list_num_cols.txt', 'r') as file_4: list_num_cols = json.load(file_4) with open('list_cat_cols.txt', 'r') as file_5: list_cat_cols = json.load(file_5) def run(): with st.form('key=form_fifa_2022') : name = st.text_input('Full Name', value='') age = st.number_input('Age', min_value=16, max_value= 60, value=25, step=1, help= 'Usia Pemain') Weight = st.number_input('Weight', min_value=50, max_value=150, value= 70) Height = st.slider('Height', 150,250,170) price = st.number_input ('price',min_value=0, max_value=10000000000, value= 0) st.markdown('---') attacking_work_rate = st.radio('Attacking Work Rate', ('Low', 'Medium', 'High'), index = 1) defensive_work_rate = st.selectbox('Defensive Work Rate', ('Low', 'Medium', 'High'), index = 1) st.markdown('---') pace = st.number_input('Pace',min_value= 0, max_value= 100, value= 50) shooting = st.number_input('shooting',min_value= 0, max_value= 100, value= 50) passing = st.number_input('Passing',min_value= 0, max_value= 100, value= 50) Dribbling = st.number_input('Dribbling',min_value= 0, max_value= 100, value= 50) defending = st.number_input('defending',min_value= 0, max_value= 100, value= 50) physicality = st.number_input('Physicality',min_value= 0, max_value= 100, value= 50) submitted = st.form_submit_button('Predict') data_inf = { 'Name': name, 'Age': age, 'Height': Height, 'Weight': Weight, 'Price': price, 'AttackingWorkRate': attacking_work_rate, 'DefensiveWorkRate': defensive_work_rate, 'PaceTotal': pace, 'ShootingTotal': shooting, 'PassingTotal': passing, 'DribblingTotal': Dribbling, 'DefendingTotal': defending, 'PhysicalityTotal': physicality } data_inf = pd.DataFrame([data_inf]) st.dataframe(data_inf) if submitted: # Split between Numerical Columns and Categorical Columns data_inf_num = data_inf[list_num_cols] data_inf_cat = data_inf[list_cat_cols] # Feature Scaling and Feature Encoding data_inf_num_scaled = model_scaler.transform(data_inf_num) data_inf_cat_encoded = model_encoder.transform(data_inf_cat) data_inf_final = np.concatenate([data_inf_num_scaled, data_inf_cat_encoded], axis=1) # Predict using Linear Regression y_pred_inf = model_lin_reg.predict(data_inf_final) st.write('# Rating : ', str(int(y_pred_inf))) if __name__== '__main__': run()