Upload 2 files
Browse filesAdding two files
- app.py +51 -0
- best_model.h5 +3 -0
app.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from tensorflow.keras.models import load_model
|
3 |
+
import numpy as np
|
4 |
+
from PIL import Image
|
5 |
+
import cv2
|
6 |
+
from tensorflow.keras.preprocessing.image import img_to_array, load_img
|
7 |
+
|
8 |
+
@st.cache_data()
|
9 |
+
def load():
|
10 |
+
model_path = "best_model.h5"
|
11 |
+
model = load_model(model_path, compile=False)
|
12 |
+
return model
|
13 |
+
|
14 |
+
# Chargement du model
|
15 |
+
model = load()
|
16 |
+
|
17 |
+
|
18 |
+
def predict(upload):
|
19 |
+
|
20 |
+
img = Image.open(upload)
|
21 |
+
img = np.asarray(img)
|
22 |
+
img_resize = cv2.resize(img, (224, 224))
|
23 |
+
img_resize = np.expand_dims(img_resize, axis=0)
|
24 |
+
pred = model.predict(img_resize)
|
25 |
+
|
26 |
+
rec = pred[0][0]
|
27 |
+
|
28 |
+
return rec
|
29 |
+
|
30 |
+
|
31 |
+
|
32 |
+
|
33 |
+
st.title("Poubelle Intelligente")
|
34 |
+
|
35 |
+
upload = st.file_uploader("Chargez l'image de votre objet",
|
36 |
+
type=['png', 'jpeg', 'jpg'])
|
37 |
+
|
38 |
+
c1, c2 = st.columns(2)
|
39 |
+
|
40 |
+
if upload:
|
41 |
+
rec = predict(upload)
|
42 |
+
prob_recyclable = rec * 100
|
43 |
+
prob_organic = (1-rec)*100
|
44 |
+
|
45 |
+
c1.image(Image.open(upload))
|
46 |
+
if prob_recyclable > 50:
|
47 |
+
c2.write(f"Je suis certain à {prob_recyclable:.2f} % que l'objet est recyclable")
|
48 |
+
else:
|
49 |
+
c2.write(f"Je suis certain à {prob_organic:.2f} % que l'objet n'est pas recyclable")
|
50 |
+
|
51 |
+
|
best_model.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a99ab614495b9f07e64fdba73e22846b5baf5fa8f16689fb8cbed82028e11b84
|
3 |
+
size 20850712
|