import streamlit as st from tensorflow.keras.models import load_model import numpy as np from PIL import Image import cv2 from tensorflow.keras.preprocessing.image import img_to_array, load_img @st.cache_data() def load(): model_path = "best_model.h5" model = load_model(model_path, compile=False) return model # Chargement du model model = load() def predict(upload): img = Image.open(upload) img = np.asarray(img) img_resize = cv2.resize(img, (224, 224)) img_resize = np.expand_dims(img_resize, axis=0) pred = model.predict(img_resize) rec = pred[0][0] return rec st.title("Poubelle Intelligente") upload = st.file_uploader("Chargez l'image de votre objet", type=['png', 'jpeg', 'jpg']) c1, c2 = st.columns(2) if upload: rec = predict(upload) prob_recyclable = rec * 100 prob_organic = (1-rec)*100 c1.image(Image.open(upload)) if prob_recyclable > 50: c2.write(f"Je suis certain à {prob_recyclable:.2f} % que l'objet est recyclable") else: c2.write(f"Je suis certain à {prob_organic:.2f} % que l'objet n'est pas recyclable")