Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
|
2 |
import os
|
3 |
import torch
|
@@ -7,9 +8,8 @@ from torch.optim import AdamW
|
|
7 |
import matplotlib.pyplot as plt
|
8 |
import matplotlib.animation as animation
|
9 |
import time
|
10 |
-
import threading
|
11 |
from tqdm import tqdm
|
12 |
-
from transformers import AutoTokenizer, AutoModel,
|
13 |
from diffusers import DiffusionPipeline
|
14 |
from huggingface_hub import login, HfApi, Repository
|
15 |
from dotenv import load_dotenv
|
@@ -27,16 +27,15 @@ class UnifiedModel(nn.Module):
|
|
27 |
hidden_states = []
|
28 |
for model in self.models:
|
29 |
if isinstance(model, nn.Module):
|
30 |
-
outputs = model(inputs)
|
31 |
hidden_states.append(outputs.last_hidden_state[:, 0, :])
|
32 |
-
elif isinstance(model, DiffusionPipeline)
|
33 |
-
outputs = model(inputs)
|
34 |
-
hidden_states.append(torch.tensor(outputs))
|
35 |
concatenated_hidden_states = torch.cat(hidden_states, dim=-1)
|
36 |
logits = self.classifier(concatenated_hidden_states)
|
37 |
return logits
|
38 |
|
39 |
-
|
40 |
class SyntheticDataset(Dataset):
|
41 |
def __init__(self, tokenizers, size=100):
|
42 |
self.tokenizers = tokenizers
|
@@ -62,7 +61,6 @@ class SyntheticDataset(Dataset):
|
|
62 |
def __getitem__(self, idx):
|
63 |
return self.data[idx]
|
64 |
|
65 |
-
|
66 |
def push_to_hub(local_dir, repo_name):
|
67 |
try:
|
68 |
repo_url = HfApi().create_repo(repo_name, exist_ok=True)
|
@@ -85,6 +83,10 @@ def push_to_hub(local_dir, repo_name):
|
|
85 |
except Exception as e:
|
86 |
print(f"Error pushing to Hugging Face Hub: {e}")
|
87 |
|
|
|
|
|
|
|
|
|
88 |
|
89 |
def main():
|
90 |
while True:
|
@@ -108,49 +110,25 @@ def main():
|
|
108 |
"Falconsai/text_summarization",
|
109 |
"microsoft/speecht5_tts",
|
110 |
"Groq/Llama-3-Groq-70B-Tool-Use",
|
111 |
-
"Groq/Llama-3-Groq-8B-Tool-Use"
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
pipeline("automatic-speech-recognition", model="openai/whisper-small"),
|
121 |
-
DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev"),
|
122 |
-
DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1"),
|
123 |
-
DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell"),
|
124 |
-
pipeline("text-generation", model="meta-llama/Meta-Llama-3.1-8B"),
|
125 |
-
pipeline("text-generation", model="openbmb/MiniCPM-V-2_6"),
|
126 |
-
pipeline("text-generation", model="bigcode/starcoder"),
|
127 |
-
pipeline("text-to-speech", model="microsoft/speecht5_tts"),
|
128 |
-
pipeline("text-generation", model="WizardLMTeam/WizardCoder-Python-34B-V1.0"),
|
129 |
-
pipeline("text-generation", model="Qwen/Qwen2-72B-Instruct"),
|
130 |
-
pipeline("text-generation", model="google/gemma-2-2b-it"),
|
131 |
-
pipeline("summarization", model="facebook/bart-large-cnn"),
|
132 |
-
pipeline("summarization", model="Falconsai/text_summarization"),
|
133 |
-
DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev"),
|
134 |
-
pipeline("text-to-audio", model="facebook/musicgen-small"),
|
135 |
-
pipeline("text-generation", model="Groq/Llama-3-Groq-70B-Tool-Use"),
|
136 |
-
pipeline("text-generation", model="Groq/Llama-3-Groq-8B-Tool-Use")
|
137 |
]
|
138 |
|
|
|
139 |
tokenizers = {}
|
140 |
models = []
|
141 |
for model_name in models_to_train:
|
142 |
-
tokenizer =
|
143 |
-
|
144 |
-
if tokenizer.pad_token is None:
|
145 |
-
tokenizer.add_special_tokens({'pad_token': tokenizer.eos_token})
|
146 |
-
|
147 |
-
model = AutoModel.from_pretrained(model_name)
|
148 |
tokenizers[model_name] = tokenizer
|
149 |
models.append(model)
|
150 |
|
151 |
-
# Agregar pipelines como modelos
|
152 |
-
models.extend(pipelines_to_unify)
|
153 |
-
|
154 |
# Crear un dataset sint茅tico para entrenamiento y evaluaci贸n
|
155 |
synthetic_dataset = SyntheticDataset(tokenizers, size=100)
|
156 |
|
@@ -163,7 +141,7 @@ def main():
|
|
163 |
train_loader = DataLoader(train_dataset, batch_size=2, shuffle=True)
|
164 |
eval_loader = DataLoader(val_dataset, batch_size=16)
|
165 |
|
166 |
-
# Unificar los modelos
|
167 |
unified_model = UnifiedModel(models)
|
168 |
unified_model.to(torch.device("cpu"))
|
169 |
|
@@ -193,45 +171,41 @@ def main():
|
|
193 |
def train(model, train_loader, eval_loader, args):
|
194 |
model.train()
|
195 |
epoch = 0
|
196 |
-
total_steps =
|
197 |
-
|
198 |
-
|
199 |
-
while epoch < args.num_train_epochs:
|
200 |
start_time = time.time()
|
201 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
input_ids = [batch[f"input_ids_{name}"].to("cpu") for name in tokenizers.keys()]
|
203 |
attention_mask = [batch[f"attention_mask_{name}"].to("cpu") for name in tokenizers.keys()]
|
204 |
labels = batch["label"].to("cpu")
|
205 |
-
optimizer.zero_grad()
|
206 |
outputs = model(input_ids)
|
207 |
loss = nn.CrossEntropyLoss()(outputs, labels)
|
208 |
-
loss.
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
estimated_total_time = total_steps * (elapsed_time / (step + 1))
|
214 |
-
estimated_remaining_time = estimated_total_time - elapsed_time
|
215 |
-
|
216 |
-
if step % args.logging_steps == 0:
|
217 |
-
train_losses.append(loss.item())
|
218 |
-
print(f"Step {step}/{total_steps}, Loss: {loss.item()}, Estimated remaining time: {estimated_remaining_time:.2f} seconds")
|
219 |
-
|
220 |
-
epoch += 1
|
221 |
-
model.eval()
|
222 |
-
eval_loss = 0
|
223 |
-
with torch.no_grad():
|
224 |
-
for batch in eval_loader:
|
225 |
-
input_ids = [batch[f"input_ids_{name}"].to("cpu") for name in tokenizers.keys()]
|
226 |
-
attention_mask = [batch[f"attention_mask_{name}"].to("cpu") for name in tokenizers.keys()]
|
227 |
-
labels = batch["label"].to("cpu")
|
228 |
-
outputs = model(input_ids)
|
229 |
-
loss = nn.CrossEntropyLoss()(outputs, labels)
|
230 |
-
eval_loss += loss.item()
|
231 |
-
|
232 |
-
eval_loss /= len(eval_loader)
|
233 |
-
eval_losses.append(eval_loss)
|
234 |
-
print(f"Epoch {epoch}/{args.num_train_epochs}, Evaluation Loss: {eval_loss}")
|
235 |
|
236 |
train(unified_model, train_loader, eval_loader, training_args)
|
237 |
|
@@ -239,19 +213,34 @@ def main():
|
|
239 |
fig, ax = plt.subplots()
|
240 |
ax.set_xlabel("Epochs")
|
241 |
ax.set_ylabel("Loss")
|
|
|
|
|
242 |
ax.legend()
|
243 |
|
244 |
def animate(i):
|
245 |
ax.clear()
|
246 |
-
ax.plot(train_losses
|
247 |
-
ax.plot(eval_losses
|
|
|
|
|
248 |
ax.legend()
|
249 |
|
250 |
-
ani = animation.FuncAnimation(fig, animate,
|
251 |
plt.show()
|
252 |
|
253 |
-
#
|
|
|
|
|
|
|
|
|
254 |
local_dir = "./outputs/unified_model"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
255 |
push_to_hub(local_dir, repo_name="Ffftdtd5dtft/my_model")
|
256 |
|
257 |
break
|
@@ -260,4 +249,4 @@ def main():
|
|
260 |
time.sleep(2)
|
261 |
|
262 |
if __name__ == "__main__":
|
263 |
-
main()
|
|
|
1 |
+
!pip install torch==2.0.1 transformers==4.27.1 datasets==2.4.0 wget==3.2 huggingface-hub==0.14.1 beautifulsoup4==4.11.1 requests==2.28.1 matplotlib tqdm python-dotenv diffusers
|
2 |
|
3 |
import os
|
4 |
import torch
|
|
|
8 |
import matplotlib.pyplot as plt
|
9 |
import matplotlib.animation as animation
|
10 |
import time
|
|
|
11 |
from tqdm import tqdm
|
12 |
+
from transformers import AutoTokenizer, AutoModel, AutoModelForTextToWaveform, TrainingArguments
|
13 |
from diffusers import DiffusionPipeline
|
14 |
from huggingface_hub import login, HfApi, Repository
|
15 |
from dotenv import load_dotenv
|
|
|
27 |
hidden_states = []
|
28 |
for model in self.models:
|
29 |
if isinstance(model, nn.Module):
|
30 |
+
outputs = model(**inputs)
|
31 |
hidden_states.append(outputs.last_hidden_state[:, 0, :])
|
32 |
+
elif isinstance(model, DiffusionPipeline):
|
33 |
+
outputs = model(**inputs)
|
34 |
+
hidden_states.append(torch.tensor(outputs).float())
|
35 |
concatenated_hidden_states = torch.cat(hidden_states, dim=-1)
|
36 |
logits = self.classifier(concatenated_hidden_states)
|
37 |
return logits
|
38 |
|
|
|
39 |
class SyntheticDataset(Dataset):
|
40 |
def __init__(self, tokenizers, size=100):
|
41 |
self.tokenizers = tokenizers
|
|
|
61 |
def __getitem__(self, idx):
|
62 |
return self.data[idx]
|
63 |
|
|
|
64 |
def push_to_hub(local_dir, repo_name):
|
65 |
try:
|
66 |
repo_url = HfApi().create_repo(repo_name, exist_ok=True)
|
|
|
83 |
except Exception as e:
|
84 |
print(f"Error pushing to Hugging Face Hub: {e}")
|
85 |
|
86 |
+
def load_model(model_name):
|
87 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
|
88 |
+
model = AutoModel.from_pretrained(model_name)
|
89 |
+
return tokenizer, model
|
90 |
|
91 |
def main():
|
92 |
while True:
|
|
|
110 |
"Falconsai/text_summarization",
|
111 |
"microsoft/speecht5_tts",
|
112 |
"Groq/Llama-3-Groq-70B-Tool-Use",
|
113 |
+
"Groq/Llama-3-Groq-8B-Tool-Use",
|
114 |
+
"facebook/musicgen-large",
|
115 |
+
"facebook/musicgen-melody",
|
116 |
+
"black-forest-labs/FLUX.1-schnell",
|
117 |
+
"facebook/musicgen-small",
|
118 |
+
"stabilityai/stable-video-diffusion-img2vid-xt-1-1",
|
119 |
+
"openai/whisper-small",
|
120 |
+
"black-forest-labs/FLUX.1-dev",
|
121 |
+
"stabilityai/stable-diffusion-2-1"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
]
|
123 |
|
124 |
+
# Inicializar los modelos y tokenizadores
|
125 |
tokenizers = {}
|
126 |
models = []
|
127 |
for model_name in models_to_train:
|
128 |
+
tokenizer, model = load_model(model_name)
|
|
|
|
|
|
|
|
|
|
|
129 |
tokenizers[model_name] = tokenizer
|
130 |
models.append(model)
|
131 |
|
|
|
|
|
|
|
132 |
# Crear un dataset sint茅tico para entrenamiento y evaluaci贸n
|
133 |
synthetic_dataset = SyntheticDataset(tokenizers, size=100)
|
134 |
|
|
|
141 |
train_loader = DataLoader(train_dataset, batch_size=2, shuffle=True)
|
142 |
eval_loader = DataLoader(val_dataset, batch_size=16)
|
143 |
|
144 |
+
# Unificar los modelos en uno solo
|
145 |
unified_model = UnifiedModel(models)
|
146 |
unified_model.to(torch.device("cpu"))
|
147 |
|
|
|
171 |
def train(model, train_loader, eval_loader, args):
|
172 |
model.train()
|
173 |
epoch = 0
|
174 |
+
total_steps = len(train_loader)
|
175 |
+
for step, batch in enumerate(train_loader):
|
|
|
|
|
176 |
start_time = time.time()
|
177 |
+
input_ids = [batch[f"input_ids_{name}"].to("cpu") for name in tokenizers.keys()]
|
178 |
+
attention_mask = [batch[f"attention_mask_{name}"].to("cpu") for name in tokenizers.keys()]
|
179 |
+
labels = batch["label"].to("cpu")
|
180 |
+
optimizer.zero_grad()
|
181 |
+
outputs = model(input_ids)
|
182 |
+
loss = nn.CrossEntropyLoss()(outputs, labels)
|
183 |
+
loss.backward()
|
184 |
+
optimizer.step()
|
185 |
+
|
186 |
+
elapsed_time = time.time() - start_time
|
187 |
+
estimated_total_time = total_steps * (elapsed_time / (step + 1))
|
188 |
+
estimated_remaining_time = estimated_total_time - elapsed_time
|
189 |
+
|
190 |
+
if step % args.logging_steps == 0:
|
191 |
+
train_losses.append(loss.item())
|
192 |
+
print(f"Step {step}/{total_steps}, Loss: {loss.item()}, Estimated remaining time: {estimated_remaining_time:.2f} seconds")
|
193 |
+
|
194 |
+
epoch += 1
|
195 |
+
model.eval()
|
196 |
+
eval_loss = 0
|
197 |
+
with torch.no_grad():
|
198 |
+
for batch in eval_loader:
|
199 |
input_ids = [batch[f"input_ids_{name}"].to("cpu") for name in tokenizers.keys()]
|
200 |
attention_mask = [batch[f"attention_mask_{name}"].to("cpu") for name in tokenizers.keys()]
|
201 |
labels = batch["label"].to("cpu")
|
|
|
202 |
outputs = model(input_ids)
|
203 |
loss = nn.CrossEntropyLoss()(outputs, labels)
|
204 |
+
eval_loss += loss.item()
|
205 |
+
|
206 |
+
eval_loss /= len(eval_loader)
|
207 |
+
eval_losses.append(eval_loss)
|
208 |
+
print(f"Epoch {epoch}/{args.num_train_epochs}, Evaluation Loss: {eval_loss}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
209 |
|
210 |
train(unified_model, train_loader, eval_loader, training_args)
|
211 |
|
|
|
213 |
fig, ax = plt.subplots()
|
214 |
ax.set_xlabel("Epochs")
|
215 |
ax.set_ylabel("Loss")
|
216 |
+
ax.plot(train_losses, label="Training Loss")
|
217 |
+
ax.plot(eval_losses, label="Evaluation Loss")
|
218 |
ax.legend()
|
219 |
|
220 |
def animate(i):
|
221 |
ax.clear()
|
222 |
+
ax.plot(train_losses, label="Training Loss")
|
223 |
+
ax.plot(eval_losses, label="Evaluation Loss")
|
224 |
+
ax.set_xlabel("Epochs")
|
225 |
+
ax.set_ylabel("Loss")
|
226 |
ax.legend()
|
227 |
|
228 |
+
ani = animation.FuncAnimation(fig, animate, interval=1000)
|
229 |
plt.show()
|
230 |
|
231 |
+
# Guardar el modelo y el tokenizador unificados
|
232 |
+
if not os.path.exists("./outputs/unified_model"):
|
233 |
+
os.makedirs("./outputs/unified_model")
|
234 |
+
|
235 |
+
# Guardar el modelo unificado en un directorio local
|
236 |
local_dir = "./outputs/unified_model"
|
237 |
+
torch.save(unified_model.state_dict(), os.path.join(local_dir, "pytorch_model.bin"))
|
238 |
+
|
239 |
+
# Guardar el tokenizador en un directorio local
|
240 |
+
for name, tokenizer in tokenizers.items():
|
241 |
+
tokenizer.save_pretrained(local_dir)
|
242 |
+
|
243 |
+
# Subir el modelo y el tokenizador a Hugging Face
|
244 |
push_to_hub(local_dir, repo_name="Ffftdtd5dtft/my_model")
|
245 |
|
246 |
break
|
|
|
249 |
time.sleep(2)
|
250 |
|
251 |
if __name__ == "__main__":
|
252 |
+
main()
|