File size: 79,214 Bytes
66d92ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
import threading

from extras.inpaint_mask import generate_mask_from_image, SAMOptions
from modules.patch import PatchSettings, patch_settings, patch_all
import modules.config

patch_all()


class AsyncTask:
    def __init__(self, args):
        from modules.flags import Performance, MetadataScheme, ip_list, disabled
        from modules.util import get_enabled_loras
        from modules.config import default_max_lora_number
        import args_manager

        self.args = args.copy()
        self.yields = []
        self.results = []
        self.last_stop = False
        self.processing = False

        self.performance_loras = []

        if len(args) == 0:
            return

        args.reverse()
        self.generate_image_grid = args.pop()
        self.prompt = args.pop()
        self.negative_prompt = args.pop()
        self.style_selections = args.pop()

        self.performance_selection = Performance(args.pop())
        self.steps = self.performance_selection.steps()
        self.original_steps = self.steps

        self.aspect_ratios_selection = args.pop()
        self.image_number = args.pop()
        self.output_format = args.pop()
        self.seed = int(args.pop())
        self.read_wildcards_in_order = args.pop()
        self.sharpness = args.pop()
        self.cfg_scale = args.pop()
        self.base_model_name = args.pop()
        self.refiner_model_name = args.pop()
        self.refiner_switch = args.pop()
        self.loras = get_enabled_loras([(bool(args.pop()), str(args.pop()), float(args.pop())) for _ in
                                        range(default_max_lora_number)])
        self.input_image_checkbox = args.pop()
        self.current_tab = args.pop()
        self.uov_method = args.pop()
        self.uov_input_image = args.pop()
        self.outpaint_selections = args.pop()
        self.inpaint_input_image = args.pop()
        self.inpaint_additional_prompt = args.pop()
        self.inpaint_mask_image_upload = args.pop()

        self.disable_preview = args.pop()
        self.disable_intermediate_results = args.pop()
        self.disable_seed_increment = args.pop()
        self.black_out_nsfw = args.pop()
        self.adm_scaler_positive = args.pop()
        self.adm_scaler_negative = args.pop()
        self.adm_scaler_end = args.pop()
        self.adaptive_cfg = args.pop()
        self.clip_skip = args.pop()
        self.sampler_name = args.pop()
        self.scheduler_name = args.pop()
        self.vae_name = args.pop()
        self.overwrite_step = args.pop()
        self.overwrite_switch = args.pop()
        self.overwrite_width = args.pop()
        self.overwrite_height = args.pop()
        self.overwrite_vary_strength = args.pop()
        self.overwrite_upscale_strength = args.pop()
        self.mixing_image_prompt_and_vary_upscale = args.pop()
        self.mixing_image_prompt_and_inpaint = args.pop()
        self.debugging_cn_preprocessor = args.pop()
        self.skipping_cn_preprocessor = args.pop()
        self.canny_low_threshold = args.pop()
        self.canny_high_threshold = args.pop()
        self.refiner_swap_method = args.pop()
        self.controlnet_softness = args.pop()
        self.freeu_enabled = args.pop()
        self.freeu_b1 = args.pop()
        self.freeu_b2 = args.pop()
        self.freeu_s1 = args.pop()
        self.freeu_s2 = args.pop()
        self.debugging_inpaint_preprocessor = args.pop()
        self.inpaint_disable_initial_latent = args.pop()
        self.inpaint_engine = args.pop()
        self.inpaint_strength = args.pop()
        self.inpaint_respective_field = args.pop()
        self.inpaint_advanced_masking_checkbox = args.pop()
        self.invert_mask_checkbox = args.pop()
        self.inpaint_erode_or_dilate = args.pop()
        self.save_final_enhanced_image_only = args.pop() if not args_manager.args.disable_image_log else False
        self.save_metadata_to_images = args.pop() if not args_manager.args.disable_metadata else False
        self.metadata_scheme = MetadataScheme(
            args.pop()) if not args_manager.args.disable_metadata else MetadataScheme.FOOOCUS

        self.cn_tasks = {x: [] for x in ip_list}
        for _ in range(modules.config.default_controlnet_image_count):
            cn_img = args.pop()
            cn_stop = args.pop()
            cn_weight = args.pop()
            cn_type = args.pop()
            if cn_img is not None:
                self.cn_tasks[cn_type].append([cn_img, cn_stop, cn_weight])

        self.debugging_dino = args.pop()
        self.dino_erode_or_dilate = args.pop()
        self.debugging_enhance_masks_checkbox = args.pop()

        self.enhance_input_image = args.pop()
        self.enhance_checkbox = args.pop()
        self.enhance_uov_method = args.pop()
        self.enhance_uov_processing_order = args.pop()
        self.enhance_uov_prompt_type = args.pop()
        self.enhance_ctrls = []
        for _ in range(modules.config.default_enhance_tabs):
            enhance_enabled = args.pop()
            enhance_mask_dino_prompt_text = args.pop()
            enhance_prompt = args.pop()
            enhance_negative_prompt = args.pop()
            enhance_mask_model = args.pop()
            enhance_mask_cloth_category = args.pop()
            enhance_mask_sam_model = args.pop()
            enhance_mask_text_threshold = args.pop()
            enhance_mask_box_threshold = args.pop()
            enhance_mask_sam_max_detections = args.pop()
            enhance_inpaint_disable_initial_latent = args.pop()
            enhance_inpaint_engine = args.pop()
            enhance_inpaint_strength = args.pop()
            enhance_inpaint_respective_field = args.pop()
            enhance_inpaint_erode_or_dilate = args.pop()
            enhance_mask_invert = args.pop()
            if enhance_enabled:
                self.enhance_ctrls.append([
                    enhance_mask_dino_prompt_text,
                    enhance_prompt,
                    enhance_negative_prompt,
                    enhance_mask_model,
                    enhance_mask_cloth_category,
                    enhance_mask_sam_model,
                    enhance_mask_text_threshold,
                    enhance_mask_box_threshold,
                    enhance_mask_sam_max_detections,
                    enhance_inpaint_disable_initial_latent,
                    enhance_inpaint_engine,
                    enhance_inpaint_strength,
                    enhance_inpaint_respective_field,
                    enhance_inpaint_erode_or_dilate,
                    enhance_mask_invert
                ])
        self.should_enhance = self.enhance_checkbox and (self.enhance_uov_method != disabled.casefold() or len(self.enhance_ctrls) > 0)
        self.images_to_enhance_count = 0
        self.enhance_stats = {}

async_tasks = []


class EarlyReturnException(BaseException):
    pass


def worker():
    global async_tasks

    import os
    import traceback
    import math
    import numpy as np
    import torch
    import time
    import shared
    import random
    import copy
    import cv2
    import modules.default_pipeline as pipeline
    import modules.core as core
    import modules.flags as flags
    import modules.patch
    import ldm_patched.modules.model_management
    import extras.preprocessors as preprocessors
    import modules.inpaint_worker as inpaint_worker
    import modules.constants as constants
    import extras.ip_adapter as ip_adapter
    import extras.face_crop
    import fooocus_version

    from extras.censor import default_censor
    from modules.sdxl_styles import apply_style, get_random_style, fooocus_expansion, apply_arrays, random_style_name
    from modules.private_logger import log
    from extras.expansion import safe_str
    from modules.util import (remove_empty_str, HWC3, resize_image, get_image_shape_ceil, set_image_shape_ceil,
                              get_shape_ceil, resample_image, erode_or_dilate, parse_lora_references_from_prompt,
                              apply_wildcards)
    from modules.upscaler import perform_upscale
    from modules.flags import Performance
    from modules.meta_parser import get_metadata_parser

    pid = os.getpid()
    print(f'Started worker with PID {pid}')

    try:
        async_gradio_app = shared.gradio_root
        flag = f'''App started successful. Use the app with {str(async_gradio_app.local_url)} or {str(async_gradio_app.server_name)}:{str(async_gradio_app.server_port)}'''
        if async_gradio_app.share:
            flag += f''' or {async_gradio_app.share_url}'''
        print(flag)
    except Exception as e:
        print(e)

    def progressbar(async_task, number, text):
        print(f'[Fooocus] {text}')
        async_task.yields.append(['preview', (number, text, None)])

    def yield_result(async_task, imgs, progressbar_index, black_out_nsfw, censor=True, do_not_show_finished_images=False):
        if not isinstance(imgs, list):
            imgs = [imgs]

        if censor and (modules.config.default_black_out_nsfw or black_out_nsfw):
            progressbar(async_task, progressbar_index, 'Checking for NSFW content ...')
            imgs = default_censor(imgs)

        async_task.results = async_task.results + imgs

        if do_not_show_finished_images:
            return

        async_task.yields.append(['results', async_task.results])
        return

    def build_image_wall(async_task):
        results = []

        if len(async_task.results) < 2:
            return

        for img in async_task.results:
            if isinstance(img, str) and os.path.exists(img):
                img = cv2.imread(img)
                img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
            if not isinstance(img, np.ndarray):
                return
            if img.ndim != 3:
                return
            results.append(img)

        H, W, C = results[0].shape

        for img in results:
            Hn, Wn, Cn = img.shape
            if H != Hn:
                return
            if W != Wn:
                return
            if C != Cn:
                return

        cols = float(len(results)) ** 0.5
        cols = int(math.ceil(cols))
        rows = float(len(results)) / float(cols)
        rows = int(math.ceil(rows))

        wall = np.zeros(shape=(H * rows, W * cols, C), dtype=np.uint8)

        for y in range(rows):
            for x in range(cols):
                if y * cols + x < len(results):
                    img = results[y * cols + x]
                    wall[y * H:y * H + H, x * W:x * W + W, :] = img

        # must use deep copy otherwise gradio is super laggy. Do not use list.append() .
        async_task.results = async_task.results + [wall]
        return

    def process_task(all_steps, async_task, callback, controlnet_canny_path, controlnet_cpds_path, current_task_id,
                     denoising_strength, final_scheduler_name, goals, initial_latent, steps, switch, positive_cond,
                     negative_cond, task, loras, tiled, use_expansion, width, height, base_progress, preparation_steps,
                     total_count, show_intermediate_results, persist_image=True):
        if async_task.last_stop is not False:
            ldm_patched.modules.model_management.interrupt_current_processing()
        if 'cn' in goals:
            for cn_flag, cn_path in [
                (flags.cn_canny, controlnet_canny_path),
                (flags.cn_cpds, controlnet_cpds_path)
            ]:
                for cn_img, cn_stop, cn_weight in async_task.cn_tasks[cn_flag]:
                    positive_cond, negative_cond = core.apply_controlnet(
                        positive_cond, negative_cond,
                        pipeline.loaded_ControlNets[cn_path], cn_img, cn_weight, 0, cn_stop)
        imgs = pipeline.process_diffusion(
            positive_cond=positive_cond,
            negative_cond=negative_cond,
            steps=steps,
            switch=switch,
            width=width,
            height=height,
            image_seed=task['task_seed'],
            callback=callback,
            sampler_name=async_task.sampler_name,
            scheduler_name=final_scheduler_name,
            latent=initial_latent,
            denoise=denoising_strength,
            tiled=tiled,
            cfg_scale=async_task.cfg_scale,
            refiner_swap_method=async_task.refiner_swap_method,
            disable_preview=async_task.disable_preview
        )
        del positive_cond, negative_cond  # Save memory
        if inpaint_worker.current_task is not None:
            imgs = [inpaint_worker.current_task.post_process(x) for x in imgs]
        current_progress = int(base_progress + (100 - preparation_steps) / float(all_steps) * steps)
        if modules.config.default_black_out_nsfw or async_task.black_out_nsfw:
            progressbar(async_task, current_progress, 'Checking for NSFW content ...')
            imgs = default_censor(imgs)
        progressbar(async_task, current_progress, f'Saving image {current_task_id + 1}/{total_count} to system ...')
        img_paths = save_and_log(async_task, height, imgs, task, use_expansion, width, loras, persist_image)
        yield_result(async_task, img_paths, current_progress, async_task.black_out_nsfw, False,
                     do_not_show_finished_images=not show_intermediate_results or async_task.disable_intermediate_results)

        return imgs, img_paths, current_progress

    def apply_patch_settings(async_task):
        patch_settings[pid] = PatchSettings(
            async_task.sharpness,
            async_task.adm_scaler_end,
            async_task.adm_scaler_positive,
            async_task.adm_scaler_negative,
            async_task.controlnet_softness,
            async_task.adaptive_cfg
        )

    def save_and_log(async_task, height, imgs, task, use_expansion, width, loras, persist_image=True) -> list:
        img_paths = []
        for x in imgs:
            d = [('Prompt', 'prompt', task['log_positive_prompt']),
                 ('Negative Prompt', 'negative_prompt', task['log_negative_prompt']),
                 ('Fooocus V2 Expansion', 'prompt_expansion', task['expansion']),
                 ('Styles', 'styles',
                  str(task['styles'] if not use_expansion else [fooocus_expansion] + task['styles'])),
                 ('Performance', 'performance', async_task.performance_selection.value),
                 ('Steps', 'steps', async_task.steps),
                 ('Resolution', 'resolution', str((width, height))),
                 ('Guidance Scale', 'guidance_scale', async_task.cfg_scale),
                 ('Sharpness', 'sharpness', async_task.sharpness),
                 ('ADM Guidance', 'adm_guidance', str((
                     modules.patch.patch_settings[pid].positive_adm_scale,
                     modules.patch.patch_settings[pid].negative_adm_scale,
                     modules.patch.patch_settings[pid].adm_scaler_end))),
                 ('Base Model', 'base_model', async_task.base_model_name),
                 ('Refiner Model', 'refiner_model', async_task.refiner_model_name),
                 ('Refiner Switch', 'refiner_switch', async_task.refiner_switch)]

            if async_task.refiner_model_name != 'None':
                if async_task.overwrite_switch > 0:
                    d.append(('Overwrite Switch', 'overwrite_switch', async_task.overwrite_switch))
                if async_task.refiner_swap_method != flags.refiner_swap_method:
                    d.append(('Refiner Swap Method', 'refiner_swap_method', async_task.refiner_swap_method))
            if modules.patch.patch_settings[pid].adaptive_cfg != modules.config.default_cfg_tsnr:
                d.append(
                    ('CFG Mimicking from TSNR', 'adaptive_cfg', modules.patch.patch_settings[pid].adaptive_cfg))

            if async_task.clip_skip > 1:
                d.append(('CLIP Skip', 'clip_skip', async_task.clip_skip))
            d.append(('Sampler', 'sampler', async_task.sampler_name))
            d.append(('Scheduler', 'scheduler', async_task.scheduler_name))
            d.append(('VAE', 'vae', async_task.vae_name))
            d.append(('Seed', 'seed', str(task['task_seed'])))

            if async_task.freeu_enabled:
                d.append(('FreeU', 'freeu',
                          str((async_task.freeu_b1, async_task.freeu_b2, async_task.freeu_s1, async_task.freeu_s2))))

            for li, (n, w) in enumerate(loras):
                if n != 'None':
                    d.append((f'LoRA {li + 1}', f'lora_combined_{li + 1}', f'{n} : {w}'))

            metadata_parser = None
            if async_task.save_metadata_to_images:
                metadata_parser = modules.meta_parser.get_metadata_parser(async_task.metadata_scheme)
                metadata_parser.set_data(task['log_positive_prompt'], task['positive'],
                                         task['log_negative_prompt'], task['negative'],
                                         async_task.steps, async_task.base_model_name, async_task.refiner_model_name,
                                         loras, async_task.vae_name)
            d.append(('Metadata Scheme', 'metadata_scheme',
                      async_task.metadata_scheme.value if async_task.save_metadata_to_images else async_task.save_metadata_to_images))
            d.append(('Version', 'version', 'Fooocus v' + fooocus_version.version))
            img_paths.append(log(x, d, metadata_parser, async_task.output_format, task, persist_image))

        return img_paths

    def apply_control_nets(async_task, height, ip_adapter_face_path, ip_adapter_path, width, current_progress):
        for task in async_task.cn_tasks[flags.cn_canny]:
            cn_img, cn_stop, cn_weight = task
            cn_img = resize_image(HWC3(cn_img), width=width, height=height)

            if not async_task.skipping_cn_preprocessor:
                cn_img = preprocessors.canny_pyramid(cn_img, async_task.canny_low_threshold,
                                                     async_task.canny_high_threshold)

            cn_img = HWC3(cn_img)
            task[0] = core.numpy_to_pytorch(cn_img)
            if async_task.debugging_cn_preprocessor:
                yield_result(async_task, cn_img, current_progress, async_task.black_out_nsfw, do_not_show_finished_images=True)
        for task in async_task.cn_tasks[flags.cn_cpds]:
            cn_img, cn_stop, cn_weight = task
            cn_img = resize_image(HWC3(cn_img), width=width, height=height)

            if not async_task.skipping_cn_preprocessor:
                cn_img = preprocessors.cpds(cn_img)

            cn_img = HWC3(cn_img)
            task[0] = core.numpy_to_pytorch(cn_img)
            if async_task.debugging_cn_preprocessor:
                yield_result(async_task, cn_img, current_progress, async_task.black_out_nsfw, do_not_show_finished_images=True)
        for task in async_task.cn_tasks[flags.cn_ip]:
            cn_img, cn_stop, cn_weight = task
            cn_img = HWC3(cn_img)

            # https://github.com/tencent-ailab/IP-Adapter/blob/d580c50a291566bbf9fc7ac0f760506607297e6d/README.md?plain=1#L75
            cn_img = resize_image(cn_img, width=224, height=224, resize_mode=0)

            task[0] = ip_adapter.preprocess(cn_img, ip_adapter_path=ip_adapter_path)
            if async_task.debugging_cn_preprocessor:
                yield_result(async_task, cn_img, current_progress, async_task.black_out_nsfw, do_not_show_finished_images=True)
        for task in async_task.cn_tasks[flags.cn_ip_face]:
            cn_img, cn_stop, cn_weight = task
            cn_img = HWC3(cn_img)

            if not async_task.skipping_cn_preprocessor:
                cn_img = extras.face_crop.crop_image(cn_img)

            # https://github.com/tencent-ailab/IP-Adapter/blob/d580c50a291566bbf9fc7ac0f760506607297e6d/README.md?plain=1#L75
            cn_img = resize_image(cn_img, width=224, height=224, resize_mode=0)

            task[0] = ip_adapter.preprocess(cn_img, ip_adapter_path=ip_adapter_face_path)
            if async_task.debugging_cn_preprocessor:
                yield_result(async_task, cn_img, current_progress, async_task.black_out_nsfw, do_not_show_finished_images=True)
        all_ip_tasks = async_task.cn_tasks[flags.cn_ip] + async_task.cn_tasks[flags.cn_ip_face]
        if len(all_ip_tasks) > 0:
            pipeline.final_unet = ip_adapter.patch_model(pipeline.final_unet, all_ip_tasks)

    def apply_vary(async_task, uov_method, denoising_strength, uov_input_image, switch, current_progress, advance_progress=False):
        if 'subtle' in uov_method:
            denoising_strength = 0.5
        if 'strong' in uov_method:
            denoising_strength = 0.85
        if async_task.overwrite_vary_strength > 0:
            denoising_strength = async_task.overwrite_vary_strength
        shape_ceil = get_image_shape_ceil(uov_input_image)
        if shape_ceil < 1024:
            print(f'[Vary] Image is resized because it is too small.')
            shape_ceil = 1024
        elif shape_ceil > 2048:
            print(f'[Vary] Image is resized because it is too big.')
            shape_ceil = 2048
        uov_input_image = set_image_shape_ceil(uov_input_image, shape_ceil)
        initial_pixels = core.numpy_to_pytorch(uov_input_image)
        if advance_progress:
            current_progress += 1
        progressbar(async_task, current_progress, 'VAE encoding ...')
        candidate_vae, _ = pipeline.get_candidate_vae(
            steps=async_task.steps,
            switch=switch,
            denoise=denoising_strength,
            refiner_swap_method=async_task.refiner_swap_method
        )
        initial_latent = core.encode_vae(vae=candidate_vae, pixels=initial_pixels)
        B, C, H, W = initial_latent['samples'].shape
        width = W * 8
        height = H * 8
        print(f'Final resolution is {str((width, height))}.')
        return uov_input_image, denoising_strength, initial_latent, width, height, current_progress

    def apply_inpaint(async_task, initial_latent, inpaint_head_model_path, inpaint_image,
                      inpaint_mask, inpaint_parameterized, denoising_strength, inpaint_respective_field, switch,
                      inpaint_disable_initial_latent, current_progress, skip_apply_outpaint=False,
                      advance_progress=False):
        if not skip_apply_outpaint:
            inpaint_image, inpaint_mask = apply_outpaint(async_task, inpaint_image, inpaint_mask)

        inpaint_worker.current_task = inpaint_worker.InpaintWorker(
            image=inpaint_image,
            mask=inpaint_mask,
            use_fill=denoising_strength > 0.99,
            k=inpaint_respective_field
        )
        if async_task.debugging_inpaint_preprocessor:
            yield_result(async_task, inpaint_worker.current_task.visualize_mask_processing(), 100,
                         async_task.black_out_nsfw, do_not_show_finished_images=True)
            raise EarlyReturnException

        if advance_progress:
            current_progress += 1
        progressbar(async_task, current_progress, 'VAE Inpaint encoding ...')
        inpaint_pixel_fill = core.numpy_to_pytorch(inpaint_worker.current_task.interested_fill)
        inpaint_pixel_image = core.numpy_to_pytorch(inpaint_worker.current_task.interested_image)
        inpaint_pixel_mask = core.numpy_to_pytorch(inpaint_worker.current_task.interested_mask)
        candidate_vae, candidate_vae_swap = pipeline.get_candidate_vae(
            steps=async_task.steps,
            switch=switch,
            denoise=denoising_strength,
            refiner_swap_method=async_task.refiner_swap_method
        )
        latent_inpaint, latent_mask = core.encode_vae_inpaint(
            mask=inpaint_pixel_mask,
            vae=candidate_vae,
            pixels=inpaint_pixel_image)
        latent_swap = None
        if candidate_vae_swap is not None:
            if advance_progress:
                current_progress += 1
            progressbar(async_task, current_progress, 'VAE SD15 encoding ...')
            latent_swap = core.encode_vae(
                vae=candidate_vae_swap,
                pixels=inpaint_pixel_fill)['samples']
        if advance_progress:
            current_progress += 1
        progressbar(async_task, current_progress, 'VAE encoding ...')
        latent_fill = core.encode_vae(
            vae=candidate_vae,
            pixels=inpaint_pixel_fill)['samples']
        inpaint_worker.current_task.load_latent(
            latent_fill=latent_fill, latent_mask=latent_mask, latent_swap=latent_swap)
        if inpaint_parameterized:
            pipeline.final_unet = inpaint_worker.current_task.patch(
                inpaint_head_model_path=inpaint_head_model_path,
                inpaint_latent=latent_inpaint,
                inpaint_latent_mask=latent_mask,
                model=pipeline.final_unet
            )
        if not inpaint_disable_initial_latent:
            initial_latent = {'samples': latent_fill}
        B, C, H, W = latent_fill.shape
        height, width = H * 8, W * 8
        final_height, final_width = inpaint_worker.current_task.image.shape[:2]
        print(f'Final resolution is {str((final_width, final_height))}, latent is {str((width, height))}.')

        return denoising_strength, initial_latent, width, height, current_progress

    def apply_outpaint(async_task, inpaint_image, inpaint_mask):
        if len(async_task.outpaint_selections) > 0:
            H, W, C = inpaint_image.shape
            if 'top' in async_task.outpaint_selections:
                inpaint_image = np.pad(inpaint_image, [[int(H * 0.3), 0], [0, 0], [0, 0]], mode='edge')
                inpaint_mask = np.pad(inpaint_mask, [[int(H * 0.3), 0], [0, 0]], mode='constant',
                                      constant_values=255)
            if 'bottom' in async_task.outpaint_selections:
                inpaint_image = np.pad(inpaint_image, [[0, int(H * 0.3)], [0, 0], [0, 0]], mode='edge')
                inpaint_mask = np.pad(inpaint_mask, [[0, int(H * 0.3)], [0, 0]], mode='constant',
                                      constant_values=255)

            H, W, C = inpaint_image.shape
            if 'left' in async_task.outpaint_selections:
                inpaint_image = np.pad(inpaint_image, [[0, 0], [int(W * 0.3), 0], [0, 0]], mode='edge')
                inpaint_mask = np.pad(inpaint_mask, [[0, 0], [int(W * 0.3), 0]], mode='constant',
                                      constant_values=255)
            if 'right' in async_task.outpaint_selections:
                inpaint_image = np.pad(inpaint_image, [[0, 0], [0, int(W * 0.3)], [0, 0]], mode='edge')
                inpaint_mask = np.pad(inpaint_mask, [[0, 0], [0, int(W * 0.3)]], mode='constant',
                                      constant_values=255)

            inpaint_image = np.ascontiguousarray(inpaint_image.copy())
            inpaint_mask = np.ascontiguousarray(inpaint_mask.copy())
            async_task.inpaint_strength = 1.0
            async_task.inpaint_respective_field = 1.0
        return inpaint_image, inpaint_mask

    def apply_upscale(async_task, uov_input_image, uov_method, switch, current_progress, advance_progress=False):
        H, W, C = uov_input_image.shape
        if advance_progress:
            current_progress += 1
        progressbar(async_task, current_progress, f'Upscaling image from {str((W, H))} ...')
        uov_input_image = perform_upscale(uov_input_image)
        print(f'Image upscaled.')
        if '1.5x' in uov_method:
            f = 1.5
        elif '2x' in uov_method:
            f = 2.0
        else:
            f = 1.0
        shape_ceil = get_shape_ceil(H * f, W * f)
        if shape_ceil < 1024:
            print(f'[Upscale] Image is resized because it is too small.')
            uov_input_image = set_image_shape_ceil(uov_input_image, 1024)
            shape_ceil = 1024
        else:
            uov_input_image = resample_image(uov_input_image, width=W * f, height=H * f)
        image_is_super_large = shape_ceil > 2800
        if 'fast' in uov_method:
            direct_return = True
        elif image_is_super_large:
            print('Image is too large. Directly returned the SR image. '
                  'Usually directly return SR image at 4K resolution '
                  'yields better results than SDXL diffusion.')
            direct_return = True
        else:
            direct_return = False
        if direct_return:
            return direct_return, uov_input_image, None, None, None, None, None, current_progress

        tiled = True
        denoising_strength = 0.382
        if async_task.overwrite_upscale_strength > 0:
            denoising_strength = async_task.overwrite_upscale_strength
        initial_pixels = core.numpy_to_pytorch(uov_input_image)
        if advance_progress:
            current_progress += 1
        progressbar(async_task, current_progress, 'VAE encoding ...')
        candidate_vae, _ = pipeline.get_candidate_vae(
            steps=async_task.steps,
            switch=switch,
            denoise=denoising_strength,
            refiner_swap_method=async_task.refiner_swap_method
        )
        initial_latent = core.encode_vae(
            vae=candidate_vae,
            pixels=initial_pixels, tiled=True)
        B, C, H, W = initial_latent['samples'].shape
        width = W * 8
        height = H * 8
        print(f'Final resolution is {str((width, height))}.')
        return direct_return, uov_input_image, denoising_strength, initial_latent, tiled, width, height, current_progress

    def apply_overrides(async_task, steps, height, width):
        if async_task.overwrite_step > 0:
            steps = async_task.overwrite_step
        switch = int(round(async_task.steps * async_task.refiner_switch))
        if async_task.overwrite_switch > 0:
            switch = async_task.overwrite_switch
        if async_task.overwrite_width > 0:
            width = async_task.overwrite_width
        if async_task.overwrite_height > 0:
            height = async_task.overwrite_height
        return steps, switch, width, height

    def process_prompt(async_task, prompt, negative_prompt, base_model_additional_loras, image_number, disable_seed_increment, use_expansion, use_style,
                       use_synthetic_refiner, current_progress, advance_progress=False):
        prompts = remove_empty_str([safe_str(p) for p in prompt.splitlines()], default='')
        negative_prompts = remove_empty_str([safe_str(p) for p in negative_prompt.splitlines()], default='')
        prompt = prompts[0]
        negative_prompt = negative_prompts[0]
        if prompt == '':
            # disable expansion when empty since it is not meaningful and influences image prompt
            use_expansion = False
        extra_positive_prompts = prompts[1:] if len(prompts) > 1 else []
        extra_negative_prompts = negative_prompts[1:] if len(negative_prompts) > 1 else []
        if advance_progress:
            current_progress += 1
        progressbar(async_task, current_progress, 'Loading models ...')
        lora_filenames = modules.util.remove_performance_lora(modules.config.lora_filenames,
                                                              async_task.performance_selection)
        loras, prompt = parse_lora_references_from_prompt(prompt, async_task.loras,
                                                          modules.config.default_max_lora_number,
                                                          lora_filenames=lora_filenames)
        loras += async_task.performance_loras
        pipeline.refresh_everything(refiner_model_name=async_task.refiner_model_name,
                                    base_model_name=async_task.base_model_name,
                                    loras=loras, base_model_additional_loras=base_model_additional_loras,
                                    use_synthetic_refiner=use_synthetic_refiner, vae_name=async_task.vae_name)
        pipeline.set_clip_skip(async_task.clip_skip)
        if advance_progress:
            current_progress += 1
        progressbar(async_task, current_progress, 'Processing prompts ...')
        tasks = []
        for i in range(image_number):
            if disable_seed_increment:
                task_seed = async_task.seed % (constants.MAX_SEED + 1)
            else:
                task_seed = (async_task.seed + i) % (constants.MAX_SEED + 1)  # randint is inclusive, % is not

            task_rng = random.Random(task_seed)  # may bind to inpaint noise in the future
            task_prompt = apply_wildcards(prompt, task_rng, i, async_task.read_wildcards_in_order)
            task_prompt = apply_arrays(task_prompt, i)
            task_negative_prompt = apply_wildcards(negative_prompt, task_rng, i, async_task.read_wildcards_in_order)
            task_extra_positive_prompts = [apply_wildcards(pmt, task_rng, i, async_task.read_wildcards_in_order) for pmt
                                           in
                                           extra_positive_prompts]
            task_extra_negative_prompts = [apply_wildcards(pmt, task_rng, i, async_task.read_wildcards_in_order) for pmt
                                           in
                                           extra_negative_prompts]

            positive_basic_workloads = []
            negative_basic_workloads = []

            task_styles = async_task.style_selections.copy()
            if use_style:
                placeholder_replaced = False

                for j, s in enumerate(task_styles):
                    if s == random_style_name:
                        s = get_random_style(task_rng)
                        task_styles[j] = s
                    p, n, style_has_placeholder = apply_style(s, positive=task_prompt)
                    if style_has_placeholder:
                        placeholder_replaced = True
                    positive_basic_workloads = positive_basic_workloads + p
                    negative_basic_workloads = negative_basic_workloads + n

                if not placeholder_replaced:
                    positive_basic_workloads = [task_prompt] + positive_basic_workloads
            else:
                positive_basic_workloads.append(task_prompt)

            negative_basic_workloads.append(task_negative_prompt)  # Always use independent workload for negative.

            positive_basic_workloads = positive_basic_workloads + task_extra_positive_prompts
            negative_basic_workloads = negative_basic_workloads + task_extra_negative_prompts

            positive_basic_workloads = remove_empty_str(positive_basic_workloads, default=task_prompt)
            negative_basic_workloads = remove_empty_str(negative_basic_workloads, default=task_negative_prompt)

            tasks.append(dict(
                task_seed=task_seed,
                task_prompt=task_prompt,
                task_negative_prompt=task_negative_prompt,
                positive=positive_basic_workloads,
                negative=negative_basic_workloads,
                expansion='',
                c=None,
                uc=None,
                positive_top_k=len(positive_basic_workloads),
                negative_top_k=len(negative_basic_workloads),
                log_positive_prompt='\n'.join([task_prompt] + task_extra_positive_prompts),
                log_negative_prompt='\n'.join([task_negative_prompt] + task_extra_negative_prompts),
                styles=task_styles
            ))
        if use_expansion:
            if advance_progress:
                current_progress += 1
            for i, t in enumerate(tasks):

                progressbar(async_task, current_progress, f'Preparing Fooocus text #{i + 1} ...')
                expansion = pipeline.final_expansion(t['task_prompt'], t['task_seed'])
                print(f'[Prompt Expansion] {expansion}')
                t['expansion'] = expansion
                t['positive'] = copy.deepcopy(t['positive']) + [expansion]  # Deep copy.
        if advance_progress:
            current_progress += 1
        for i, t in enumerate(tasks):
            progressbar(async_task, current_progress, f'Encoding positive #{i + 1} ...')
            t['c'] = pipeline.clip_encode(texts=t['positive'], pool_top_k=t['positive_top_k'])
        if advance_progress:
            current_progress += 1
        for i, t in enumerate(tasks):
            if abs(float(async_task.cfg_scale) - 1.0) < 1e-4:
                t['uc'] = pipeline.clone_cond(t['c'])
            else:
                progressbar(async_task, current_progress, f'Encoding negative #{i + 1} ...')
                t['uc'] = pipeline.clip_encode(texts=t['negative'], pool_top_k=t['negative_top_k'])
        return tasks, use_expansion, loras, current_progress

    def apply_freeu(async_task):
        print(f'FreeU is enabled!')
        pipeline.final_unet = core.apply_freeu(
            pipeline.final_unet,
            async_task.freeu_b1,
            async_task.freeu_b2,
            async_task.freeu_s1,
            async_task.freeu_s2
        )

    def patch_discrete(unet, scheduler_name):
        return core.opModelSamplingDiscrete.patch(unet, scheduler_name, False)[0]

    def patch_edm(unet, scheduler_name):
        return core.opModelSamplingContinuousEDM.patch(unet, scheduler_name, 120.0, 0.002)[0]

    def patch_samplers(async_task):
        final_scheduler_name = async_task.scheduler_name

        if async_task.scheduler_name in ['lcm', 'tcd']:
            final_scheduler_name = 'sgm_uniform'
            if pipeline.final_unet is not None:
                pipeline.final_unet = patch_discrete(pipeline.final_unet, async_task.scheduler_name)
            if pipeline.final_refiner_unet is not None:
                pipeline.final_refiner_unet = patch_discrete(pipeline.final_refiner_unet, async_task.scheduler_name)

        elif async_task.scheduler_name == 'edm_playground_v2.5':
            final_scheduler_name = 'karras'
            if pipeline.final_unet is not None:
                pipeline.final_unet = patch_edm(pipeline.final_unet, async_task.scheduler_name)
            if pipeline.final_refiner_unet is not None:
                pipeline.final_refiner_unet = patch_edm(pipeline.final_refiner_unet, async_task.scheduler_name)

        return final_scheduler_name

    def set_hyper_sd_defaults(async_task, current_progress, advance_progress=False):
        print('Enter Hyper-SD mode.')
        if advance_progress:
            current_progress += 1
        progressbar(async_task, current_progress, 'Downloading Hyper-SD components ...')
        async_task.performance_loras += [(modules.config.downloading_sdxl_hyper_sd_lora(), 0.8)]
        if async_task.refiner_model_name != 'None':
            print(f'Refiner disabled in Hyper-SD mode.')
        async_task.refiner_model_name = 'None'
        async_task.sampler_name = 'dpmpp_sde_gpu'
        async_task.scheduler_name = 'karras'
        async_task.sharpness = 0.0
        async_task.cfg_scale = 1.0
        async_task.adaptive_cfg = 1.0
        async_task.refiner_switch = 1.0
        async_task.adm_scaler_positive = 1.0
        async_task.adm_scaler_negative = 1.0
        async_task.adm_scaler_end = 0.0
        return current_progress

    def set_lightning_defaults(async_task, current_progress, advance_progress=False):
        print('Enter Lightning mode.')
        if advance_progress:
            current_progress += 1
        progressbar(async_task, 1, 'Downloading Lightning components ...')
        async_task.performance_loras += [(modules.config.downloading_sdxl_lightning_lora(), 1.0)]
        if async_task.refiner_model_name != 'None':
            print(f'Refiner disabled in Lightning mode.')
        async_task.refiner_model_name = 'None'
        async_task.sampler_name = 'euler'
        async_task.scheduler_name = 'sgm_uniform'
        async_task.sharpness = 0.0
        async_task.cfg_scale = 1.0
        async_task.adaptive_cfg = 1.0
        async_task.refiner_switch = 1.0
        async_task.adm_scaler_positive = 1.0
        async_task.adm_scaler_negative = 1.0
        async_task.adm_scaler_end = 0.0
        return current_progress

    def set_lcm_defaults(async_task, current_progress, advance_progress=False):
        print('Enter LCM mode.')
        if advance_progress:
            current_progress += 1
        progressbar(async_task, 1, 'Downloading LCM components ...')
        async_task.performance_loras += [(modules.config.downloading_sdxl_lcm_lora(), 1.0)]
        if async_task.refiner_model_name != 'None':
            print(f'Refiner disabled in LCM mode.')
        async_task.refiner_model_name = 'None'
        async_task.sampler_name = 'lcm'
        async_task.scheduler_name = 'lcm'
        async_task.sharpness = 0.0
        async_task.cfg_scale = 1.0
        async_task.adaptive_cfg = 1.0
        async_task.refiner_switch = 1.0
        async_task.adm_scaler_positive = 1.0
        async_task.adm_scaler_negative = 1.0
        async_task.adm_scaler_end = 0.0
        return current_progress

    def apply_image_input(async_task, base_model_additional_loras, clip_vision_path, controlnet_canny_path,
                          controlnet_cpds_path, goals, inpaint_head_model_path, inpaint_image, inpaint_mask,
                          inpaint_parameterized,  ip_adapter_face_path, ip_adapter_path, ip_negative_path,
                          skip_prompt_processing, use_synthetic_refiner):
        if (async_task.current_tab == 'uov' or (
                async_task.current_tab == 'ip' and async_task.mixing_image_prompt_and_vary_upscale)) \
                and async_task.uov_method != flags.disabled.casefold() and async_task.uov_input_image is not None:
            async_task.uov_input_image, skip_prompt_processing, async_task.steps = prepare_upscale(
                async_task, goals, async_task.uov_input_image, async_task.uov_method, async_task.performance_selection,
                async_task.steps, 1, skip_prompt_processing=skip_prompt_processing)
        if (async_task.current_tab == 'inpaint' or (
                async_task.current_tab == 'ip' and async_task.mixing_image_prompt_and_inpaint)) \
                and isinstance(async_task.inpaint_input_image, dict):
            inpaint_image = async_task.inpaint_input_image['image']
            inpaint_mask = async_task.inpaint_input_image['mask'][:, :, 0]

            if async_task.inpaint_advanced_masking_checkbox:
                if isinstance(async_task.inpaint_mask_image_upload, dict):
                    if (isinstance(async_task.inpaint_mask_image_upload['image'], np.ndarray)
                            and isinstance(async_task.inpaint_mask_image_upload['mask'], np.ndarray)
                            and async_task.inpaint_mask_image_upload['image'].ndim == 3):
                        async_task.inpaint_mask_image_upload = np.maximum(
                            async_task.inpaint_mask_image_upload['image'],
                            async_task.inpaint_mask_image_upload['mask'])
                if isinstance(async_task.inpaint_mask_image_upload,
                              np.ndarray) and async_task.inpaint_mask_image_upload.ndim == 3:
                    H, W, C = inpaint_image.shape
                    async_task.inpaint_mask_image_upload = resample_image(async_task.inpaint_mask_image_upload,
                                                                          width=W, height=H)
                    async_task.inpaint_mask_image_upload = np.mean(async_task.inpaint_mask_image_upload, axis=2)
                    async_task.inpaint_mask_image_upload = (async_task.inpaint_mask_image_upload > 127).astype(
                        np.uint8) * 255
                    inpaint_mask = np.maximum(inpaint_mask, async_task.inpaint_mask_image_upload)

            if int(async_task.inpaint_erode_or_dilate) != 0:
                inpaint_mask = erode_or_dilate(inpaint_mask, async_task.inpaint_erode_or_dilate)

            if async_task.invert_mask_checkbox:
                inpaint_mask = 255 - inpaint_mask

            inpaint_image = HWC3(inpaint_image)
            if isinstance(inpaint_image, np.ndarray) and isinstance(inpaint_mask, np.ndarray) \
                    and (np.any(inpaint_mask > 127) or len(async_task.outpaint_selections) > 0):
                progressbar(async_task, 1, 'Downloading upscale models ...')
                modules.config.downloading_upscale_model()
                if inpaint_parameterized:
                    progressbar(async_task, 1, 'Downloading inpainter ...')
                    inpaint_head_model_path, inpaint_patch_model_path = modules.config.downloading_inpaint_models(
                        async_task.inpaint_engine)
                    base_model_additional_loras += [(inpaint_patch_model_path, 1.0)]
                    print(f'[Inpaint] Current inpaint model is {inpaint_patch_model_path}')
                    if async_task.refiner_model_name == 'None':
                        use_synthetic_refiner = True
                        async_task.refiner_switch = 0.8
                else:
                    inpaint_head_model_path, inpaint_patch_model_path = None, None
                    print(f'[Inpaint] Parameterized inpaint is disabled.')
                if async_task.inpaint_additional_prompt != '':
                    if async_task.prompt == '':
                        async_task.prompt = async_task.inpaint_additional_prompt
                    else:
                        async_task.prompt = async_task.inpaint_additional_prompt + '\n' + async_task.prompt
                goals.append('inpaint')
        if async_task.current_tab == 'ip' or \
                async_task.mixing_image_prompt_and_vary_upscale or \
                async_task.mixing_image_prompt_and_inpaint:
            goals.append('cn')
            progressbar(async_task, 1, 'Downloading control models ...')
            if len(async_task.cn_tasks[flags.cn_canny]) > 0:
                controlnet_canny_path = modules.config.downloading_controlnet_canny()
            if len(async_task.cn_tasks[flags.cn_cpds]) > 0:
                controlnet_cpds_path = modules.config.downloading_controlnet_cpds()
            if len(async_task.cn_tasks[flags.cn_ip]) > 0:
                clip_vision_path, ip_negative_path, ip_adapter_path = modules.config.downloading_ip_adapters('ip')
            if len(async_task.cn_tasks[flags.cn_ip_face]) > 0:
                clip_vision_path, ip_negative_path, ip_adapter_face_path = modules.config.downloading_ip_adapters(
                    'face')
        if async_task.current_tab == 'enhance' and async_task.enhance_input_image is not None:
            goals.append('enhance')
            skip_prompt_processing = True
            async_task.enhance_input_image = HWC3(async_task.enhance_input_image)
        return base_model_additional_loras, clip_vision_path, controlnet_canny_path, controlnet_cpds_path, inpaint_head_model_path, inpaint_image, inpaint_mask, ip_adapter_face_path, ip_adapter_path, ip_negative_path, skip_prompt_processing, use_synthetic_refiner

    def prepare_upscale(async_task, goals, uov_input_image, uov_method, performance, steps, current_progress,
                        advance_progress=False, skip_prompt_processing=False):
        uov_input_image = HWC3(uov_input_image)
        if 'vary' in uov_method:
            goals.append('vary')
        elif 'upscale' in uov_method:
            goals.append('upscale')
            if 'fast' in uov_method:
                skip_prompt_processing = True
                steps = 0
            else:
                steps = performance.steps_uov()

            if advance_progress:
                current_progress += 1
            progressbar(async_task, current_progress, 'Downloading upscale models ...')
            modules.config.downloading_upscale_model()
        return uov_input_image, skip_prompt_processing, steps

    def prepare_enhance_prompt(prompt: str, fallback_prompt: str):
        if safe_str(prompt) == '' or len(remove_empty_str([safe_str(p) for p in prompt.splitlines()], default='')) == 0:
            prompt = fallback_prompt

        return prompt

    def stop_processing(async_task, processing_start_time):
        async_task.processing = False
        processing_time = time.perf_counter() - processing_start_time
        print(f'Processing time (total): {processing_time:.2f} seconds')

    def process_enhance(all_steps, async_task, callback, controlnet_canny_path, controlnet_cpds_path,
                        current_progress, current_task_id, denoising_strength, inpaint_disable_initial_latent,
                        inpaint_engine, inpaint_respective_field, inpaint_strength,
                        prompt, negative_prompt, final_scheduler_name, goals, height, img, mask,
                        preparation_steps, steps, switch, tiled, total_count, use_expansion, use_style,
                        use_synthetic_refiner, width, show_intermediate_results=True, persist_image=True):
        base_model_additional_loras = []
        inpaint_head_model_path = None
        inpaint_parameterized = inpaint_engine != 'None'  # inpaint_engine = None, improve detail
        initial_latent = None

        prompt = prepare_enhance_prompt(prompt, async_task.prompt)
        negative_prompt = prepare_enhance_prompt(negative_prompt, async_task.negative_prompt)

        if 'vary' in goals:
            img, denoising_strength, initial_latent, width, height, current_progress = apply_vary(
                async_task, async_task.enhance_uov_method, denoising_strength, img, switch, current_progress)
        if 'upscale' in goals:
            direct_return, img, denoising_strength, initial_latent, tiled, width, height, current_progress = apply_upscale(
                async_task, img, async_task.enhance_uov_method, switch, current_progress)
            if direct_return:
                d = [('Upscale (Fast)', 'upscale_fast', '2x')]
                if modules.config.default_black_out_nsfw or async_task.black_out_nsfw:
                    progressbar(async_task, current_progress, 'Checking for NSFW content ...')
                    img = default_censor(img)
                progressbar(async_task, current_progress, f'Saving image {current_task_id + 1}/{total_count} to system ...')
                uov_image_path = log(img, d, output_format=async_task.output_format, persist_image=persist_image)
                yield_result(async_task, uov_image_path, current_progress, async_task.black_out_nsfw, False,
                             do_not_show_finished_images=not show_intermediate_results or async_task.disable_intermediate_results)
                return current_progress, img, prompt, negative_prompt

        if 'inpaint' in goals and inpaint_parameterized:
            progressbar(async_task, current_progress, 'Downloading inpainter ...')
            inpaint_head_model_path, inpaint_patch_model_path = modules.config.downloading_inpaint_models(
                inpaint_engine)
            if inpaint_patch_model_path not in base_model_additional_loras:
                base_model_additional_loras += [(inpaint_patch_model_path, 1.0)]
        progressbar(async_task, current_progress, 'Preparing enhance prompts ...')
        # positive and negative conditioning aren't available here anymore, process prompt again
        tasks_enhance, use_expansion, loras, current_progress = process_prompt(
            async_task, prompt, negative_prompt, base_model_additional_loras, 1, True,
            use_expansion, use_style, use_synthetic_refiner, current_progress)
        task_enhance = tasks_enhance[0]
        # TODO could support vary, upscale and CN in the future
        # if 'cn' in goals:
        #     apply_control_nets(async_task, height, ip_adapter_face_path, ip_adapter_path, width)
        if async_task.freeu_enabled:
            apply_freeu(async_task)
        patch_samplers(async_task)
        if 'inpaint' in goals:
            denoising_strength, initial_latent, width, height, current_progress = apply_inpaint(
                async_task, None, inpaint_head_model_path, img, mask,
                inpaint_parameterized, inpaint_strength,
                inpaint_respective_field, switch, inpaint_disable_initial_latent,
                current_progress, True)
        imgs, img_paths, current_progress = process_task(all_steps, async_task, callback, controlnet_canny_path,
                                                         controlnet_cpds_path, current_task_id, denoising_strength,
                                                         final_scheduler_name, goals, initial_latent, steps, switch,
                                                         task_enhance['c'], task_enhance['uc'], task_enhance, loras,
                                                         tiled, use_expansion, width, height, current_progress,
                                                         preparation_steps, total_count, show_intermediate_results,
                                                         persist_image)

        del task_enhance['c'], task_enhance['uc']  # Save memory
        return current_progress, imgs[0], prompt, negative_prompt

    def enhance_upscale(all_steps, async_task, base_progress, callback, controlnet_canny_path, controlnet_cpds_path,
                        current_task_id, denoising_strength, done_steps_inpainting, done_steps_upscaling, enhance_steps,
                        prompt, negative_prompt, final_scheduler_name, height, img, preparation_steps, switch, tiled,
                        total_count, use_expansion, use_style, use_synthetic_refiner, width, persist_image=True):
        # reset inpaint worker to prevent tensor size issues and not mix upscale and inpainting
        inpaint_worker.current_task = None

        current_progress = int(base_progress + (100 - preparation_steps) / float(all_steps) * (done_steps_upscaling + done_steps_inpainting))
        goals_enhance = []
        img, skip_prompt_processing, steps = prepare_upscale(
            async_task, goals_enhance, img, async_task.enhance_uov_method, async_task.performance_selection,
            enhance_steps, current_progress)
        steps, _, _, _ = apply_overrides(async_task, steps, height, width)
        exception_result = ''
        if len(goals_enhance) > 0:
            try:
                current_progress, img, prompt, negative_prompt = process_enhance(
                    all_steps, async_task, callback, controlnet_canny_path,
                    controlnet_cpds_path, current_progress, current_task_id, denoising_strength, False,
                    'None', 0.0, 0.0, prompt, negative_prompt, final_scheduler_name,
                    goals_enhance, height, img, None, preparation_steps, steps, switch, tiled, total_count,
                    use_expansion, use_style, use_synthetic_refiner, width, persist_image=persist_image)

            except ldm_patched.modules.model_management.InterruptProcessingException:
                if async_task.last_stop == 'skip':
                    print('User skipped')
                    async_task.last_stop = False
                    # also skip all enhance steps for this image, but add the steps to the progress bar
                    if async_task.enhance_uov_processing_order == flags.enhancement_uov_before:
                        done_steps_inpainting += len(async_task.enhance_ctrls) * enhance_steps
                    exception_result = 'continue'
                else:
                    print('User stopped')
                    exception_result = 'break'
            finally:
                done_steps_upscaling += steps
        return current_task_id, done_steps_inpainting, done_steps_upscaling, img, exception_result

    @torch.no_grad()
    @torch.inference_mode()
    def handler(async_task: AsyncTask):
        preparation_start_time = time.perf_counter()
        async_task.processing = True

        async_task.outpaint_selections = [o.lower() for o in async_task.outpaint_selections]
        base_model_additional_loras = []
        async_task.uov_method = async_task.uov_method.casefold()
        async_task.enhance_uov_method = async_task.enhance_uov_method.casefold()

        if fooocus_expansion in async_task.style_selections:
            use_expansion = True
            async_task.style_selections.remove(fooocus_expansion)
        else:
            use_expansion = False

        use_style = len(async_task.style_selections) > 0

        if async_task.base_model_name == async_task.refiner_model_name:
            print(f'Refiner disabled because base model and refiner are same.')
            async_task.refiner_model_name = 'None'

        current_progress = 0
        if async_task.performance_selection == Performance.EXTREME_SPEED:
            set_lcm_defaults(async_task, current_progress, advance_progress=True)
        elif async_task.performance_selection == Performance.LIGHTNING:
            set_lightning_defaults(async_task, current_progress, advance_progress=True)
        elif async_task.performance_selection == Performance.HYPER_SD:
            set_hyper_sd_defaults(async_task, current_progress, advance_progress=True)

        print(f'[Parameters] Adaptive CFG = {async_task.adaptive_cfg}')
        print(f'[Parameters] CLIP Skip = {async_task.clip_skip}')
        print(f'[Parameters] Sharpness = {async_task.sharpness}')
        print(f'[Parameters] ControlNet Softness = {async_task.controlnet_softness}')
        print(f'[Parameters] ADM Scale = '
              f'{async_task.adm_scaler_positive} : '
              f'{async_task.adm_scaler_negative} : '
              f'{async_task.adm_scaler_end}')
        print(f'[Parameters] Seed = {async_task.seed}')

        apply_patch_settings(async_task)

        print(f'[Parameters] CFG = {async_task.cfg_scale}')

        initial_latent = None
        denoising_strength = 1.0
        tiled = False

        width, height = async_task.aspect_ratios_selection.replace('×', ' ').split(' ')[:2]
        width, height = int(width), int(height)

        skip_prompt_processing = False

        inpaint_worker.current_task = None
        inpaint_parameterized = async_task.inpaint_engine != 'None'
        inpaint_image = None
        inpaint_mask = None
        inpaint_head_model_path = None

        use_synthetic_refiner = False

        controlnet_canny_path = None
        controlnet_cpds_path = None
        clip_vision_path, ip_negative_path, ip_adapter_path, ip_adapter_face_path = None, None, None, None

        goals = []
        tasks = []
        current_progress = 1

        if async_task.input_image_checkbox:
            base_model_additional_loras, clip_vision_path, controlnet_canny_path, controlnet_cpds_path, inpaint_head_model_path, inpaint_image, inpaint_mask, ip_adapter_face_path, ip_adapter_path, ip_negative_path, skip_prompt_processing, use_synthetic_refiner = apply_image_input(
                async_task, base_model_additional_loras, clip_vision_path, controlnet_canny_path, controlnet_cpds_path,
                goals, inpaint_head_model_path, inpaint_image, inpaint_mask, inpaint_parameterized, ip_adapter_face_path,
                ip_adapter_path, ip_negative_path, skip_prompt_processing, use_synthetic_refiner)

        # Load or unload CNs
        progressbar(async_task, current_progress, 'Loading control models ...')
        pipeline.refresh_controlnets([controlnet_canny_path, controlnet_cpds_path])
        ip_adapter.load_ip_adapter(clip_vision_path, ip_negative_path, ip_adapter_path)
        ip_adapter.load_ip_adapter(clip_vision_path, ip_negative_path, ip_adapter_face_path)

        async_task.steps, switch, width, height = apply_overrides(async_task, async_task.steps, height, width)

        print(f'[Parameters] Sampler = {async_task.sampler_name} - {async_task.scheduler_name}')
        print(f'[Parameters] Steps = {async_task.steps} - {switch}')

        progressbar(async_task, current_progress, 'Initializing ...')

        loras = async_task.loras
        if not skip_prompt_processing:
            tasks, use_expansion, loras, current_progress = process_prompt(async_task, async_task.prompt, async_task.negative_prompt,
                                                         base_model_additional_loras, async_task.image_number,
                                                         async_task.disable_seed_increment, use_expansion, use_style,
                                                         use_synthetic_refiner, current_progress, advance_progress=True)

        if len(goals) > 0:
            current_progress += 1
            progressbar(async_task, current_progress, 'Image processing ...')

        should_enhance = async_task.enhance_checkbox and (async_task.enhance_uov_method != flags.disabled.casefold() or len(async_task.enhance_ctrls) > 0)

        if 'vary' in goals:
            async_task.uov_input_image, denoising_strength, initial_latent, width, height, current_progress = apply_vary(
                async_task, async_task.uov_method, denoising_strength, async_task.uov_input_image, switch,
                current_progress)

        if 'upscale' in goals:
            direct_return, async_task.uov_input_image, denoising_strength, initial_latent, tiled, width, height, current_progress = apply_upscale(
                async_task, async_task.uov_input_image, async_task.uov_method, switch, current_progress,
                advance_progress=True)
            if direct_return:
                d = [('Upscale (Fast)', 'upscale_fast', '2x')]
                if modules.config.default_black_out_nsfw or async_task.black_out_nsfw:
                    progressbar(async_task, 100, 'Checking for NSFW content ...')
                    async_task.uov_input_image = default_censor(async_task.uov_input_image)
                progressbar(async_task, 100, 'Saving image to system ...')
                uov_input_image_path = log(async_task.uov_input_image, d, output_format=async_task.output_format)
                yield_result(async_task, uov_input_image_path, 100, async_task.black_out_nsfw, False,
                             do_not_show_finished_images=True)
                return

        if 'inpaint' in goals:
            try:
                denoising_strength, initial_latent, width, height, current_progress = apply_inpaint(async_task,
                                                                                                    initial_latent,
                                                                                                    inpaint_head_model_path,
                                                                                                    inpaint_image,
                                                                                                    inpaint_mask,
                                                                                                    inpaint_parameterized,
                                                                                                    async_task.inpaint_strength,
                                                                                                    async_task.inpaint_respective_field,
                                                                                                    switch,
                                                                                                    async_task.inpaint_disable_initial_latent,
                                                                                                    current_progress,
                                                                                                    advance_progress=True)
            except EarlyReturnException:
                return

        if 'cn' in goals:
            apply_control_nets(async_task, height, ip_adapter_face_path, ip_adapter_path, width, current_progress)
            if async_task.debugging_cn_preprocessor:
                return

        if async_task.freeu_enabled:
            apply_freeu(async_task)

        # async_task.steps can have value of uov steps here when upscale has been applied
        steps, _, _, _ = apply_overrides(async_task, async_task.steps, height, width)

        images_to_enhance = []
        if 'enhance' in goals:
            async_task.image_number = 1
            images_to_enhance += [async_task.enhance_input_image]
            height, width, _ = async_task.enhance_input_image.shape
            # input image already provided, processing is skipped
            steps = 0
            yield_result(async_task, async_task.enhance_input_image, current_progress, async_task.black_out_nsfw, False,
                         async_task.disable_intermediate_results)

        all_steps = steps * async_task.image_number

        if async_task.enhance_checkbox and async_task.enhance_uov_method != flags.disabled.casefold():
            enhance_upscale_steps = async_task.performance_selection.steps()
            if 'upscale' in async_task.enhance_uov_method:
                if 'fast' in async_task.enhance_uov_method:
                    enhance_upscale_steps = 0
                else:
                    enhance_upscale_steps = async_task.performance_selection.steps_uov()
            enhance_upscale_steps, _, _, _ = apply_overrides(async_task, enhance_upscale_steps, height, width)
            enhance_upscale_steps_total = async_task.image_number * enhance_upscale_steps
            all_steps += enhance_upscale_steps_total

        if async_task.enhance_checkbox and len(async_task.enhance_ctrls) != 0:
            enhance_steps, _, _, _ = apply_overrides(async_task, async_task.original_steps, height, width)
            all_steps += async_task.image_number * len(async_task.enhance_ctrls) * enhance_steps

        all_steps = max(all_steps, 1)

        print(f'[Parameters] Denoising Strength = {denoising_strength}')

        if isinstance(initial_latent, dict) and 'samples' in initial_latent:
            log_shape = initial_latent['samples'].shape
        else:
            log_shape = f'Image Space {(height, width)}'

        print(f'[Parameters] Initial Latent shape: {log_shape}')

        preparation_time = time.perf_counter() - preparation_start_time
        print(f'Preparation time: {preparation_time:.2f} seconds')

        final_scheduler_name = patch_samplers(async_task)
        print(f'Using {final_scheduler_name} scheduler.')

        async_task.yields.append(['preview', (current_progress, 'Moving model to GPU ...', None)])

        processing_start_time = time.perf_counter()

        preparation_steps = current_progress
        total_count = async_task.image_number

        def callback(step, x0, x, total_steps, y):
            if step == 0:
                async_task.callback_steps = 0
            async_task.callback_steps += (100 - preparation_steps) / float(all_steps)
            async_task.yields.append(['preview', (
                int(current_progress + async_task.callback_steps),
                f'Sampling step {step + 1}/{total_steps}, image {current_task_id + 1}/{total_count} ...', y)])

        show_intermediate_results = len(tasks) > 1 or async_task.should_enhance
        persist_image = not async_task.should_enhance or not async_task.save_final_enhanced_image_only

        for current_task_id, task in enumerate(tasks):
            progressbar(async_task, current_progress, f'Preparing task {current_task_id + 1}/{async_task.image_number} ...')
            execution_start_time = time.perf_counter()

            try:
                imgs, img_paths, current_progress = process_task(all_steps, async_task, callback, controlnet_canny_path,
                                                                 controlnet_cpds_path, current_task_id,
                                                                 denoising_strength, final_scheduler_name, goals,
                                                                 initial_latent, async_task.steps, switch, task['c'],
                                                                 task['uc'], task, loras, tiled, use_expansion, width,
                                                                 height, current_progress, preparation_steps,
                                                                 async_task.image_number, show_intermediate_results,
                                                                 persist_image)

                current_progress = int(preparation_steps + (100 - preparation_steps) / float(all_steps) * async_task.steps * (current_task_id + 1))
                images_to_enhance += imgs

            except ldm_patched.modules.model_management.InterruptProcessingException:
                if async_task.last_stop == 'skip':
                    print('User skipped')
                    async_task.last_stop = False
                    continue
                else:
                    print('User stopped')
                    break

            del task['c'], task['uc']  # Save memory
            execution_time = time.perf_counter() - execution_start_time
            print(f'Generating and saving time: {execution_time:.2f} seconds')

        if not async_task.should_enhance:
            print(f'[Enhance] Skipping, preconditions aren\'t met')
            stop_processing(async_task, processing_start_time)
            return

        progressbar(async_task, current_progress, 'Processing enhance ...')

        active_enhance_tabs = len(async_task.enhance_ctrls)
        should_process_enhance_uov = async_task.enhance_uov_method != flags.disabled.casefold()
        enhance_uov_before = False
        enhance_uov_after = False
        if should_process_enhance_uov:
            active_enhance_tabs += 1
            enhance_uov_before = async_task.enhance_uov_processing_order == flags.enhancement_uov_before
            enhance_uov_after = async_task.enhance_uov_processing_order == flags.enhancement_uov_after
        total_count = len(images_to_enhance) * active_enhance_tabs
        async_task.images_to_enhance_count = len(images_to_enhance)

        base_progress = current_progress
        current_task_id = -1
        done_steps_upscaling = 0
        done_steps_inpainting = 0
        enhance_steps, _, _, _ = apply_overrides(async_task, async_task.original_steps, height, width)
        exception_result = None
        for index, img in enumerate(images_to_enhance):
            async_task.enhance_stats[index] = 0
            enhancement_image_start_time = time.perf_counter()

            last_enhance_prompt = async_task.prompt
            last_enhance_negative_prompt = async_task.negative_prompt

            if enhance_uov_before:
                current_task_id += 1
                persist_image = not async_task.save_final_enhanced_image_only or active_enhance_tabs == 0
                current_task_id, done_steps_inpainting, done_steps_upscaling, img, exception_result = enhance_upscale(
                    all_steps, async_task, base_progress, callback, controlnet_canny_path, controlnet_cpds_path,
                    current_task_id, denoising_strength, done_steps_inpainting, done_steps_upscaling, enhance_steps,
                    async_task.prompt, async_task.negative_prompt, final_scheduler_name, height, img, preparation_steps,
                    switch, tiled, total_count, use_expansion, use_style, use_synthetic_refiner, width, persist_image)
                async_task.enhance_stats[index] += 1

                if exception_result == 'continue':
                    continue
                elif exception_result == 'break':
                    break

            # inpaint for all other tabs
            for enhance_mask_dino_prompt_text, enhance_prompt, enhance_negative_prompt, enhance_mask_model, enhance_mask_cloth_category, enhance_mask_sam_model, enhance_mask_text_threshold, enhance_mask_box_threshold, enhance_mask_sam_max_detections, enhance_inpaint_disable_initial_latent, enhance_inpaint_engine, enhance_inpaint_strength, enhance_inpaint_respective_field, enhance_inpaint_erode_or_dilate, enhance_mask_invert in async_task.enhance_ctrls:
                current_task_id += 1
                current_progress = int(base_progress + (100 - preparation_steps) / float(all_steps) * (done_steps_upscaling + done_steps_inpainting))
                progressbar(async_task, current_progress, f'Preparing enhancement {current_task_id + 1}/{total_count} ...')
                enhancement_task_start_time = time.perf_counter()
                is_last_enhance_for_image = (current_task_id + 1) % active_enhance_tabs == 0 and not enhance_uov_after
                persist_image = not async_task.save_final_enhanced_image_only or is_last_enhance_for_image

                extras = {}
                if enhance_mask_model == 'sam':
                    print(f'[Enhance] Searching for "{enhance_mask_dino_prompt_text}"')
                elif enhance_mask_model == 'u2net_cloth_seg':
                    extras['cloth_category'] = enhance_mask_cloth_category

                mask, dino_detection_count, sam_detection_count, sam_detection_on_mask_count = generate_mask_from_image(
                    img, mask_model=enhance_mask_model, extras=extras, sam_options=SAMOptions(
                        dino_prompt=enhance_mask_dino_prompt_text,
                        dino_box_threshold=enhance_mask_box_threshold,
                        dino_text_threshold=enhance_mask_text_threshold,
                        dino_erode_or_dilate=async_task.dino_erode_or_dilate,
                        dino_debug=async_task.debugging_dino,
                        max_detections=enhance_mask_sam_max_detections,
                        model_type=enhance_mask_sam_model,
                    ))
                if len(mask.shape) == 3:
                    mask = mask[:, :, 0]

                if int(enhance_inpaint_erode_or_dilate) != 0:
                    mask = erode_or_dilate(mask, enhance_inpaint_erode_or_dilate)

                if enhance_mask_invert:
                    mask = 255 - mask

                if async_task.debugging_enhance_masks_checkbox:
                    async_task.yields.append(['preview', (current_progress, 'Loading ...', mask)])
                    yield_result(async_task, mask, current_progress, async_task.black_out_nsfw, False,
                                 async_task.disable_intermediate_results)
                    async_task.enhance_stats[index] += 1

                print(f'[Enhance] {dino_detection_count} boxes detected')
                print(f'[Enhance] {sam_detection_count} segments detected in boxes')
                print(f'[Enhance] {sam_detection_on_mask_count} segments applied to mask')

                if enhance_mask_model == 'sam' and (dino_detection_count == 0 or not async_task.debugging_dino and sam_detection_on_mask_count == 0):
                    print(f'[Enhance] No "{enhance_mask_dino_prompt_text}" detected, skipping')
                    continue

                goals_enhance = ['inpaint']

                try:
                    current_progress, img, enhance_prompt_processed, enhance_negative_prompt_processed = process_enhance(
                        all_steps, async_task, callback, controlnet_canny_path, controlnet_cpds_path,
                        current_progress, current_task_id, denoising_strength, enhance_inpaint_disable_initial_latent,
                        enhance_inpaint_engine, enhance_inpaint_respective_field, enhance_inpaint_strength,
                        enhance_prompt, enhance_negative_prompt, final_scheduler_name, goals_enhance, height, img, mask,
                        preparation_steps, enhance_steps, switch, tiled, total_count, use_expansion, use_style,
                        use_synthetic_refiner, width, persist_image=persist_image)
                    async_task.enhance_stats[index] += 1

                    if (should_process_enhance_uov and async_task.enhance_uov_processing_order == flags.enhancement_uov_after
                            and async_task.enhance_uov_prompt_type == flags.enhancement_uov_prompt_type_last_filled):
                        if enhance_prompt_processed != '':
                            last_enhance_prompt = enhance_prompt_processed
                        if enhance_negative_prompt_processed != '':
                            last_enhance_negative_prompt = enhance_negative_prompt_processed

                except ldm_patched.modules.model_management.InterruptProcessingException:
                    if async_task.last_stop == 'skip':
                        print('User skipped')
                        async_task.last_stop = False
                        continue
                    else:
                        print('User stopped')
                        exception_result = 'break'
                        break
                finally:
                    done_steps_inpainting += enhance_steps

                enhancement_task_time = time.perf_counter() - enhancement_task_start_time
                print(f'Enhancement time: {enhancement_task_time:.2f} seconds')

            if exception_result == 'break':
                break

            if enhance_uov_after:
                current_task_id += 1
                # last step in enhance, always save
                persist_image = True
                current_task_id, done_steps_inpainting, done_steps_upscaling, img, exception_result = enhance_upscale(
                    all_steps, async_task, base_progress, callback, controlnet_canny_path, controlnet_cpds_path,
                    current_task_id, denoising_strength, done_steps_inpainting, done_steps_upscaling, enhance_steps,
                    last_enhance_prompt, last_enhance_negative_prompt, final_scheduler_name, height, img,
                    preparation_steps, switch, tiled, total_count, use_expansion, use_style, use_synthetic_refiner,
                    width, persist_image)
                async_task.enhance_stats[index] += 1
                
                if exception_result == 'continue':
                    continue
                elif exception_result == 'break':
                    break

            enhancement_image_time = time.perf_counter() - enhancement_image_start_time
            print(f'Enhancement image time: {enhancement_image_time:.2f} seconds')

        stop_processing(async_task, processing_start_time)
        return

    while True:
        time.sleep(0.01)
        if len(async_tasks) > 0:
            task = async_tasks.pop(0)

            try:
                handler(task)
                if task.generate_image_grid:
                    build_image_wall(task)
                task.yields.append(['finish', task.results])
                pipeline.prepare_text_encoder(async_call=True)
            except:
                traceback.print_exc()
                task.yields.append(['finish', task.results])
            finally:
                if pid in modules.patch.patch_settings:
                    del modules.patch.patch_settings[pid]
    pass


threading.Thread(target=worker, daemon=True).start()