Spaces:
Running
Running
File size: 19,910 Bytes
a5d12c2 3ae460d a5d12c2 3ae460d a5d12c2 1c1ba7e 3ae460d a5d12c2 3ae460d 1c1ba7e 3ae460d a5d12c2 3ae460d 1c1ba7e 9e7fd56 3ae460d 5fade1f 3ae460d 1c1ba7e 3ae460d 1c1ba7e 3ae460d 1c1ba7e 3ae460d 1811735 3ae460d 1811735 3ae460d 1811735 3ae460d 1811735 3ae460d 1c1ba7e 3ae460d 1c1ba7e 3ae460d a5d12c2 1c1ba7e 3ae460d 1c1ba7e 3ae460d 1c1ba7e 3ae460d 1c1ba7e 3ae460d 1c1ba7e 3ae460d 1c1ba7e 3ae460d 1c1ba7e 3ae460d 1c1ba7e 3ae460d 1c1ba7e 3ae460d 1c1ba7e 3ae460d 1c1ba7e 3ae460d 1c1ba7e 3ae460d 1c1ba7e 3ae460d 1c1ba7e 3ae460d 1c1ba7e 3ae460d 1654627 3ae460d 1c1ba7e 3ae460d 1c1ba7e 3ae460d 1c1ba7e 3ae460d 1c1ba7e 3ae460d 1c1ba7e 3ae460d 1c1ba7e 94334a3 3ae460d 1c1ba7e 1811735 3ae460d 94334a3 3ae460d 94334a3 3ae460d 94334a3 3ae460d 1c1ba7e 3ae460d 1c1ba7e 3ae460d 1c1ba7e 3ae460d 94334a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 |
import os
import uuid
import redis
import torch
import scipy
from transformers import (
pipeline, AutoTokenizer, AutoModelForCausalLM, AutoProcessor,
MusicgenForConditionalGeneration, WhisperProcessor, WhisperForConditionalGeneration,
MarianMTModel, MarianTokenizer, BartTokenizer, BartForConditionalGeneration
)
from diffusers import (
FluxPipeline, StableDiffusionPipeline, DPMSolverMultistepScheduler,
StableDiffusionImg2ImgPipeline, DiffusionPipeline
)
from diffusers.utils import export_to_video
from datasets import load_dataset
from PIL import Image
import gradio as gr
from dotenv import load_dotenv
import multiprocessing
load_dotenv()
redis_client = redis.Redis(
host=os.getenv('REDIS_HOST'),
port=os.getenv('REDIS_PORT'),
password=os.getenv("REDIS_PASSWORD")
)
huggingface_token = os.getenv('HF_TOKEN')
def generate_unique_id():
return str(uuid.uuid4())
def store_special_tokens(tokenizer, model_name):
special_tokens = {
'pad_token': tokenizer.pad_token,
'pad_token_id': tokenizer.pad_token_id,
'eos_token': tokenizer.eos_token,
'eos_token_id': tokenizer.eos_token_id,
'unk_token': tokenizer.unk_token,
'unk_token_id': tokenizer.unk_token_id,
'bos_token': tokenizer.bos_token,
'bos_token_id': tokenizer.bos_token_id
}
redis_client.hmset(f"tokenizer_special_tokens:{model_name}", special_tokens)
def load_special_tokens(tokenizer, model_name):
special_tokens = redis_client.hgetall(f"tokenizer_special_tokens:{model_name}")
if special_tokens:
tokenizer.pad_token = special_tokens.get('pad_token', '').decode("utf-8")
tokenizer.pad_token_id = int(special_tokens.get('pad_token_id', -1))
tokenizer.eos_token = special_tokens.get('eos_token', '').decode("utf-8")
tokenizer.eos_token_id = int(special_tokens.get('eos_token_id', -1))
tokenizer.unk_token = special_tokens.get('unk_token', '').decode("utf-8")
tokenizer.unk_token_id = int(special_tokens.get('unk_token_id', -1))
tokenizer.bos_token = special_tokens.get('bos_token', '').decode("utf-8")
tokenizer.bos_token_id = int(special_tokens.get('bos_token_id', -1))
def train_and_store_transformers_model(model_name, data):
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
model.train()
store_special_tokens(tokenizer, model_name)
torch.save(model.state_dict(), "transformers_model.pt")
with open("transformers_model.pt", "rb") as f:
model_data = f.read()
redis_client.set(f"transformers_model:{model_name}:state_dict", model_data)
tokenizer_data = tokenizer.save_pretrained("transformers_tokenizer")
redis_client.set(f"transformers_tokenizer:{model_name}", tokenizer_data)
def generate_transformers_response_from_redis(model_name, prompt):
unique_id = generate_unique_id()
model_data = redis_client.get(f"transformers_model:{model_name}:state_dict")
with open("transformers_model.pt", "wb") as f:
f.write(model_data)
model = AutoModelForCausalLM.from_pretrained(model_name)
model.load_state_dict(torch.load("transformers_model.pt"))
tokenizer_data = redis_client.get(f"transformers_tokenizer:{model_name}")
tokenizer = AutoTokenizer.from_pretrained("transformers_tokenizer")
load_special_tokens(tokenizer, model_name)
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(inputs.input_ids, max_length=50)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
redis_client.set(f"transformers_response:{unique_id}", response)
return response
def train_and_store_diffusers_model(model_name, data):
pipe = FluxPipeline.from_pretrained(model_name, torch_dtype=torch.bfloat16)
pipe.enable_model_cpu_offload()
pipe.train()
pipe.save_pretrained("diffusers_model")
with open("diffusers_model/flux_pipeline.pt", "rb") as f:
model_data = f.read()
redis_client.set(f"diffusers_model:{model_name}", model_data)
def generate_diffusers_image_from_redis(model_name, prompt):
unique_id = generate_unique_id()
model_data = redis_client.get(f"diffusers_model:{model_name}")
with open("diffusers_model/flux_pipeline.pt", "wb") as f:
f.write(model_data)
pipe = FluxPipeline.from_pretrained("diffusers_model", torch_dtype=torch.bfloat16)
pipe.enable_model_cpu_offload()
image = pipe(prompt, guidance_scale=0.0, num_inference_steps=4, max_sequence_length=256,
generator=torch.Generator("cpu").manual_seed(0)).images[0]
image_path = f"images/diffusers_{unique_id}.png"
image.save(image_path)
redis_client.set(f"diffusers_image:{unique_id}", image_path)
return image
def train_and_store_musicgen_model(model_name, data):
processor = AutoProcessor.from_pretrained(model_name)
model = MusicgenForConditionalGeneration.from_pretrained(model_name)
model.train()
torch.save(model.state_dict(), "musicgen_model.pt")
with open("musicgen_model.pt", "rb") as f:
model_data = f.read()
redis_client.set(f"musicgen_model:{model_name}:state_dict", model_data)
processor_data = processor.save_pretrained("musicgen_processor")
redis_client.set(f"musicgen_processor:{model_name}", processor_data)
def generate_musicgen_audio_from_redis(model_name, text_prompts):
unique_id = generate_unique_id()
model_data = redis_client.get(f"musicgen_model:{model_name}:state_dict")
with open("musicgen_model.pt", "wb") as f:
f.write(model_data)
model = MusicgenForConditionalGeneration.from_pretrained(model_name)
model.load_state_dict(torch.load("musicgen_model.pt"))
processor_data = redis_client.get(f"musicgen_processor:{model_name}")
processor = AutoProcessor.from_pretrained("musicgen_processor")
inputs = processor(text=text_prompts, padding=True, return_tensors="pt")
audio_values = model.generate(**inputs, max_new_tokens=256)
audio_path = f"audio/musicgen_{unique_id}.wav"
scipy.io.wavfile.write(audio_path, rate=audio_values["sampling_rate"], data=audio_values["audio"])
redis_client.set(f"musicgen_audio:{unique_id}", audio_path)
return audio_path
def train_and_store_stable_diffusion_model(model_name, data):
pipe = StableDiffusionPipeline.from_pretrained(model_name, torch_dtype=torch.float16)
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
pipe = pipe.to("cuda")
pipe.train()
pipe.save_pretrained("stable_diffusion_model")
with open("stable_diffusion_model/stable_diffusion_pipeline.pt", "rb") as f:
model_data = f.read()
redis_client.set(f"stable_diffusion_model:{model_name}", model_data)
def generate_stable_diffusion_image_from_redis(model_name, prompt):
unique_id = generate_unique_id()
model_data = redis_client.get(f"stable_diffusion_model:{model_name}")
with open("stable_diffusion_model/stable_diffusion_pipeline.pt", "wb") as f:
f.write(model_data)
pipe = StableDiffusionPipeline.from_pretrained("stable_diffusion_model", torch_dtype=torch.float16)
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
pipe = pipe.to("cuda")
image = pipe(prompt).images[0]
image_path = f"images/stable_diffusion_{unique_id}.png"
image.save(image_path)
redis_client.set(f"stable_diffusion_image:{unique_id}", image_path)
return image
def train_and_store_img2img_model(model_name, data):
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(model_name, torch_dtype=torch.float16)
pipe = pipe.to("cuda")
pipe.train()
pipe.save_pretrained("img2img_model")
with open("img2img_model/img2img_pipeline.pt", "rb") as f:
model_data = f.read()
redis_client.set(f"img2img_model:{model_name}", model_data)
def generate_img2img_from_redis(model_name, init_image, prompt, strength=0.75):
unique_id = generate_unique_id()
model_data = redis_client.get(f"img2img_model:{model_name}")
with open("img2img_model/img2img_pipeline.pt", "wb") as f:
f.write(model_data)
pipe = StableDiffusionImg2ImgPipeline.from_pretrained("img2img_model", torch_dtype=torch.float16)
pipe = pipe.to("cuda")
init_image = Image.open(init_image).convert("RGB")
image = pipe(prompt=prompt, init_image=init_image, strength=strength).images[0]
image_path = f"images/img2img_{unique_id}.png"
image.save(image_path)
redis_client.set(f"img2img_image:{unique_id}", image_path)
return image
def train_and_store_marianmt_model(model_name, data):
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
model.train()
torch.save(model.state_dict(), "marianmt_model.pt")
with open("marianmt_model.pt", "rb") as f:
model_data = f.read()
redis_client.set(f"marianmt_model:{model_name}:state_dict", model_data)
tokenizer_data = tokenizer.save_pretrained("marianmt_tokenizer")
redis_client.set(f"marianmt_tokenizer:{model_name}", tokenizer_data)
def translate_text_from_redis(model_name, text, src_lang, tgt_lang):
unique_id = generate_unique_id()
model_data = redis_client.get(f"marianmt_model:{model_name}:state_dict")
with open("marianmt_model.pt", "wb") as f:
f.write(model_data)
model = MarianMTModel.from_pretrained(model_name)
model.load_state_dict(torch.load("marianmt_model.pt"))
tokenizer_data = redis_client.get(f"marianmt_tokenizer:{model_name}")
tokenizer = MarianTokenizer.from_pretrained("marianmt_tokenizer")
inputs = tokenizer(text, return_tensors="pt", src_lang=src_lang, tgt_lang=tgt_lang)
translated_tokens = model.generate(**inputs)
translation = tokenizer.decode(translated_tokens[0], skip_special_tokens=True)
redis_client.set(f"marianmt_translation:{unique_id}", translation)
return translation
def train_and_store_bart_model(model_name, data):
tokenizer = BartTokenizer.from_pretrained(model_name)
model = BartForConditionalGeneration.from_pretrained(model_name)
model.train()
torch.save(model.state_dict(), "bart_model.pt")
with open("bart_model.pt", "rb") as f:
model_data = f.read()
redis_client.set(f"bart_model:{model_name}:state_dict", model_data)
tokenizer_data = tokenizer.save_pretrained("bart_tokenizer")
redis_client.set(f"bart_tokenizer:{model_name}", tokenizer_data)
def summarize_text_from_redis(model_name, text):
unique_id = generate_unique_id()
model_data = redis_client.get(f"bart_model:{model_name}:state_dict")
with open("bart_model.pt", "wb") as f:
f.write(model_data)
model = BartForConditionalGeneration.from_pretrained(model_name)
model.load_state_dict(torch.load("bart_model.pt"))
tokenizer_data = redis_client.get(f"bart_tokenizer:{model_name}")
tokenizer = BartTokenizer.from_pretrained("bart_tokenizer")
load_special_tokens(tokenizer, model_name)
inputs = tokenizer(text, return_tensors="pt", truncation=True)
summary_ids = model.generate(inputs["input_ids"], max_length=150, min_length=40, length_penalty=2.0, num_beams=4)
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
redis_client.set(f"bart_summary:{unique_id}", summary)
return summary
def auto_train_and_store(model_name, task, data):
if task == "text-generation":
train_and_store_transformers_model(model_name, data)
elif task == "diffusers":
train_and_store_diffusers_model(model_name, data)
elif task == "musicgen":
train_and_store_musicgen_model(model_name, data)
elif task == "stable-diffusion":
train_and_store_stable_diffusion_model(model_name, data)
elif task == "img2img":
train_and_store_img2img_model(model_name, data)
elif task == "translation":
train_and_store_marianmt_model(model_name, data)
elif task == "summarization":
train_and_store_bart_model(model_name, data)
def transcribe_audio_from_redis(audio_file):
audio_file_path = "audio_file.wav"
with open(audio_file_path, "wb") as f:
f.write(audio_file)
processor = WhisperProcessor.from_pretrained("openai/whisper-small")
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small")
model.config.forced_decoder_ids = None
input_features = processor(audio_file, sampling_rate=16000, return_tensors="pt").input_features
predicted_ids = model.generate(input_features)
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
return transcription[0]
def generate_image_from_redis(model_name, prompt, model_type):
if model_type == "diffusers":
image = generate_diffusers_image_from_redis(model_name, prompt)
elif model_type == "stable-diffusion":
image = generate_stable_diffusion_image_from_redis(model_name, prompt)
elif model_type == "img2img":
image = generate_img2img_from_redis(model_name, "init_image.png", prompt)
return image
def generate_video_from_redis(prompt):
pipe = DiffusionPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b", torch_dtype=torch.float16,
variant="fp16")
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
pipe.enable_model_cpu_offload()
video_frames = pipe(prompt, num_inference_steps=25).frames
video_path = export_to_video(video_frames)
unique_id = generate_unique_id()
redis_client.set(f"video_{unique_id}", video_path)
return video_path
def generate_random_response(prompts, generator):
responses = []
for prompt in prompts:
response = generator(prompt, max_length=50)[0]['generated_text']
responses.append(response)
return responses
def process_parallel(tasks):
with multiprocessing.Pool() as pool:
results = pool.map(lambda task: task(), tasks)
return results
def generate_response_from_prompt(prompt, model_name="google/flan-t5-xl"):
generator = pipeline('text-generation', model=model_name, tokenizer=model_name)
responses = generate_random_response([prompt], generator)
return responses[0]
def generate_image_from_prompt(prompt, image_type, model_name="CompVis/stable-diffusion-v1-4"):
if image_type == "diffusers":
image = generate_diffusers_image_from_redis(model_name, prompt)
elif image_type == "stable-diffusion":
image = generate_stable_diffusion_image_from_redis(model_name, prompt)
elif image_type == "img2img":
image = generate_img2img_from_redis(model_name, "init_image.png", prompt)
return image
def gradio_app():
with gr.Blocks() as app:
gr.Markdown(
"""
# IA Generativa con Transformers y Diffusers
Explora diferentes modelos de IA para generar texto, im谩genes, audio, video y m谩s.
"""
)
with gr.Tab("Texto"):
with gr.Row():
with gr.Column():
prompt_text = gr.Textbox(label="Texto de Entrada", placeholder="Ingresa tu prompt de texto aqu铆...")
text_button = gr.Button("Generar Texto", variant="primary")
with gr.Column():
text_output = gr.Textbox(label="Respuesta")
text_button.click(generate_response_from_prompt, inputs=prompt_text, outputs=text_output)
with gr.Tab("Imagen"):
with gr.Row():
with gr.Column():
prompt_image = gr.Textbox(label="Prompt de Imagen",
placeholder="Ingresa tu prompt de imagen aqu铆...")
image_type = gr.Dropdown(["diffusers", "stable-diffusion", "img2img"], label="Tipo de Modelo",
value="stable-diffusion")
model_name_image = gr.Textbox(label="Nombre del Modelo",
value="CompVis/stable-diffusion-v1-4")
image_button = gr.Button("Generar Imagen", variant="primary")
with gr.Column():
image_output = gr.Image(label="Imagen Generada")
image_button.click(generate_image_from_prompt, inputs=[prompt_image, image_type, model_name_image],
outputs=image_output)
with gr.Tab("Video"):
with gr.Row():
with gr.Column():
prompt_video = gr.Textbox(label="Prompt de Video", placeholder="Ingresa tu prompt de video aqu铆...")
video_button = gr.Button("Generar Video", variant="primary")
with gr.Column():
video_output = gr.Video(label="Video Generado")
video_button.click(generate_video_from_redis, inputs=prompt_video, outputs=video_output)
with gr.Tab("Audio"):
with gr.Row():
with gr.Column():
model_name_audio = gr.Textbox(label="Nombre del Modelo", value="facebook/musicgen-small")
text_prompts_audio = gr.Textbox(label="Prompts de Audio",
placeholder="Ingresa tus prompts de audio aqu铆...")
audio_button = gr.Button("Generar Audio", variant="primary")
with gr.Column():
audio_output = gr.Audio(label="Audio Generado")
audio_button.click(generate_musicgen_audio_from_redis, inputs=[model_name_audio, text_prompts_audio],
outputs=audio_output)
with gr.Tab("Transcripci贸n"):
with gr.Row():
with gr.Column():
audio_file = gr.Audio(type="filepath", label="Archivo de Audio")
audio_button = gr.Button("Transcribir Audio", variant="primary")
with gr.Column():
transcription_output = gr.Textbox(label="Transcripci贸n")
audio_button.click(transcribe_audio_from_redis, inputs=audio_file, outputs=transcription_output)
with gr.Tab("Traducci贸n"):
with gr.Row():
with gr.Column():
model_name_translate = gr.Textbox(label="Nombre del Modelo", value="Helsinki-NLP/opus-mt-en-es")
text_input = gr.Textbox(label="Texto a Traducir", placeholder="Ingresa el texto a traducir...")
src_lang_input = gr.Textbox(label="Idioma de Origen", value="en")
tgt_lang_input = gr.Textbox(label="Idioma de Destino", value="es")
translate_button = gr.Button("Traducir Texto", variant="primary")
with gr.Column():
translation_output = gr.Textbox(label="Traducci贸n")
translate_button.click(translate_text_from_redis,
inputs=[model_name_translate, text_input, src_lang_input, tgt_lang_input],
outputs=translation_output)
with gr.Tab("Resumen"):
with gr.Row():
with gr.Column():
model_name_summarize = gr.Textbox(label="Nombre del Modelo", value="facebook/bart-large-cnn")
text_to_summarize = gr.Textbox(label="Texto para Resumir",
placeholder="Ingresa el texto a resumir...")
summarize_button = gr.Button("Generar Resumen", variant="primary")
with gr.Column():
summary_output = gr.Textbox(label="Resumen")
summarize_button.click(summarize_text_from_redis, inputs=[model_name_summarize, text_to_summarize],
outputs=summary_output)
app.launch()
if __name__ == "__main__":
gradio_app() |