Ffftdtd5dtft commited on
Commit
5110965
·
verified ·
1 Parent(s): a421ab7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +160 -52
app.py CHANGED
@@ -2,25 +2,27 @@ import os
2
  import shutil
3
  import subprocess
4
  import signal
 
5
  import gradio as gr
6
- from huggingface_hub import create_repo, HfApi, snapshot_download, whoami, ModelCard
 
 
 
 
 
7
  from gradio_huggingfacehub_search import HuggingfaceHubSearch
 
8
  from apscheduler.schedulers.background import BackgroundScheduler
 
9
  from textwrap import dedent
10
 
11
- # Ensure the token is set from the environment, if not prompt user
12
  HF_TOKEN = os.environ.get("HF_TOKEN")
13
 
14
- def ensure_valid_token(oauth_token):
15
- if not oauth_token or not oauth_token.strip():
16
- raise ValueError("You must be logged in.")
17
- return oauth_token.strip()
18
-
19
  def generate_importance_matrix(model_path, train_data_path):
20
  imatrix_command = f"./llama-imatrix -m ../{model_path} -f {train_data_path} -ngl 99 --output-frequency 10"
21
-
22
  os.chdir("llama.cpp")
23
-
24
  print(f"Current working directory: {os.getcwd()}")
25
  print(f"Files in the current directory: {os.listdir('.')}")
26
 
@@ -31,22 +33,22 @@ def generate_importance_matrix(model_path, train_data_path):
31
  process = subprocess.Popen(imatrix_command, shell=True)
32
 
33
  try:
34
- process.wait(timeout=60)
35
  except subprocess.TimeoutExpired:
36
  print("Imatrix computation timed out. Sending SIGINT to allow graceful termination...")
37
  process.send_signal(signal.SIGINT)
38
  try:
39
- process.wait(timeout=5)
40
  except subprocess.TimeoutExpired:
41
- print("Imatrix proc still didn't terminate. Forcefully terminating process...")
42
  process.kill()
43
 
44
  os.chdir("..")
45
 
46
  print("Importance matrix generation completed.")
47
 
48
- def split_upload_model(model_path, repo_id, oauth_token, split_max_tensors=256, split_max_size=None):
49
- if not oauth_token or not oauth_token.strip():
50
  raise ValueError("You have to be logged in.")
51
 
52
  split_cmd = f"llama.cpp/llama-gguf-split --split --split-max-tensors {split_max_tensors}"
@@ -63,11 +65,11 @@ def split_upload_model(model_path, repo_id, oauth_token, split_max_tensors=256,
63
  if result.returncode != 0:
64
  raise Exception(f"Error splitting the model: {result.stderr}")
65
  print("Model split successfully!")
66
-
67
  sharded_model_files = [f for f in os.listdir('.') if f.startswith(model_path.split('.')[0])]
68
  if sharded_model_files:
69
  print(f"Sharded model files: {sharded_model_files}")
70
- api = HfApi(token=oauth_token)
71
  for file in sharded_model_files:
72
  file_path = os.path.join('.', file)
73
  print(f"Uploading file: {file_path}")
@@ -84,14 +86,14 @@ def split_upload_model(model_path, repo_id, oauth_token, split_max_tensors=256,
84
 
85
  print("Sharded model has been uploaded successfully!")
86
 
87
- def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_repo, train_data_file, split_model, split_max_tensors, split_max_size, oauth_token):
88
- token = ensure_valid_token(oauth_token)
89
-
90
  model_name = model_id.split('/')[-1]
91
  fp16 = f"{model_name}.fp16.gguf"
92
 
93
  try:
94
- api = HfApi(token=token)
95
 
96
  dl_pattern = [
97
  "*.safetensors", "*.bin", "*.pt", "*.onnx", "*.h5", "*.tflite",
@@ -144,7 +146,7 @@ def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_rep
144
  else:
145
  print("Not using imatrix quantization.")
146
 
147
- username = whoami(token)["name"]
148
  quantized_gguf_name = f"{model_name.lower()}-{imatrix_q_method.lower()}-imat.gguf" if use_imatrix else f"{model_name.lower()}-{q_method.lower()}.gguf"
149
  quantized_gguf_path = quantized_gguf_name
150
 
@@ -165,7 +167,7 @@ def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_rep
165
  print("Repo created successfully!", new_repo_url)
166
 
167
  try:
168
- card = ModelCard.load(model_id, token=token)
169
  except:
170
  card = ModelCard("")
171
  if card.data.tags is None:
@@ -198,13 +200,29 @@ def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_rep
198
  llama-server --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -c 2048
199
  ```
200
 
201
- Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the llama.cpp repository.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
202
  """
203
  )
204
  card.save(f"README.md")
205
 
206
  if split_model:
207
- split_upload_model(quantized_gguf_path, new_repo_id, token, split_max_tensors, split_max_size)
208
  else:
209
  try:
210
  print(f"Uploading quantized model: {quantized_gguf_path}")
@@ -215,7 +233,8 @@ def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_rep
215
  )
216
  except Exception as e:
217
  raise Exception(f"Error uploading quantized model: {e}")
218
-
 
219
  if os.path.isfile(imatrix_path):
220
  try:
221
  print(f"Uploading imatrix.dat: {imatrix_path}")
@@ -244,32 +263,121 @@ def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_rep
244
  shutil.rmtree(model_name, ignore_errors=True)
245
  print("Folder cleaned up successfully!")
246
 
247
- with gr.Blocks() as app:
248
- gr.Markdown("# Model Processing")
249
-
250
- # Input fields for model processing
251
- with gr.Row():
252
- model_id = gr.Textbox(label="Model ID", placeholder="e.g., user/model_name")
253
- q_method = gr.Dropdown(["method1", "method2"], label="Quantization Method")
254
- use_imatrix = gr.Checkbox(label="Use Importance Matrix")
255
- imatrix_q_method = gr.Dropdown(["methodA", "methodB"], label="Importance Matrix Method")
256
- private_repo = gr.Checkbox(label="Private Repository")
257
- train_data_file = gr.File(label="Training Data File", type="file")
258
- split_model = gr.Checkbox(label="Split Model")
259
- split_max_tensors = gr.Number(label="Max Tensors (for splitting)", value=256)
260
- split_max_size = gr.Number(label="Max Size (for splitting)", value=None)
261
- oauth_token = gr.Textbox(label="Hugging Face Token", type="password")
262
-
263
- # Output fields
264
- result = gr.HTML()
265
- img = gr.Image()
266
-
267
- # Process button
268
- process_button = gr.Button("Process Model")
269
- process_button.click(
270
- process_model,
271
- inputs=[model_id, q_method, use_imatrix, imatrix_q_method, private_repo, train_data_file, split_model, split_max_tensors, split_max_size, oauth_token],
272
- outputs=[result, img]
273
  )
274
 
275
- app.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  import shutil
3
  import subprocess
4
  import signal
5
+ os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
6
  import gradio as gr
7
+
8
+ from huggingface_hub import create_repo, HfApi
9
+ from huggingface_hub import snapshot_download
10
+ from huggingface_hub import whoami
11
+ from huggingface_hub import ModelCard
12
+
13
  from gradio_huggingfacehub_search import HuggingfaceHubSearch
14
+
15
  from apscheduler.schedulers.background import BackgroundScheduler
16
+
17
  from textwrap import dedent
18
 
 
19
  HF_TOKEN = os.environ.get("HF_TOKEN")
20
 
 
 
 
 
 
21
  def generate_importance_matrix(model_path, train_data_path):
22
  imatrix_command = f"./llama-imatrix -m ../{model_path} -f {train_data_path} -ngl 99 --output-frequency 10"
23
+
24
  os.chdir("llama.cpp")
25
+
26
  print(f"Current working directory: {os.getcwd()}")
27
  print(f"Files in the current directory: {os.listdir('.')}")
28
 
 
33
  process = subprocess.Popen(imatrix_command, shell=True)
34
 
35
  try:
36
+ process.wait(timeout=60) # added wait
37
  except subprocess.TimeoutExpired:
38
  print("Imatrix computation timed out. Sending SIGINT to allow graceful termination...")
39
  process.send_signal(signal.SIGINT)
40
  try:
41
+ process.wait(timeout=5) # grace period
42
  except subprocess.TimeoutExpired:
43
+ print("Imatrix proc still didn't term. Forecfully terming process...")
44
  process.kill()
45
 
46
  os.chdir("..")
47
 
48
  print("Importance matrix generation completed.")
49
 
50
+ def split_upload_model(model_path, repo_id, oauth_token: gr.OAuthToken | None, split_max_tensors=256, split_max_size=None):
51
+ if oauth_token.token is None:
52
  raise ValueError("You have to be logged in.")
53
 
54
  split_cmd = f"llama.cpp/llama-gguf-split --split --split-max-tensors {split_max_tensors}"
 
65
  if result.returncode != 0:
66
  raise Exception(f"Error splitting the model: {result.stderr}")
67
  print("Model split successfully!")
68
+
69
  sharded_model_files = [f for f in os.listdir('.') if f.startswith(model_path.split('.')[0])]
70
  if sharded_model_files:
71
  print(f"Sharded model files: {sharded_model_files}")
72
+ api = HfApi(token=oauth_token.token)
73
  for file in sharded_model_files:
74
  file_path = os.path.join('.', file)
75
  print(f"Uploading file: {file_path}")
 
86
 
87
  print("Sharded model has been uploaded successfully!")
88
 
89
+ def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_repo, train_data_file, split_model, split_max_tensors, split_max_size, oauth_token: gr.OAuthToken | None):
90
+ if oauth_token.token is None:
91
+ raise ValueError("You must be logged in to use GGUF-my-repo")
92
  model_name = model_id.split('/')[-1]
93
  fp16 = f"{model_name}.fp16.gguf"
94
 
95
  try:
96
+ api = HfApi(token=oauth_token.token)
97
 
98
  dl_pattern = [
99
  "*.safetensors", "*.bin", "*.pt", "*.onnx", "*.h5", "*.tflite",
 
146
  else:
147
  print("Not using imatrix quantization.")
148
 
149
+ username = whoami(oauth_token.token)["name"]
150
  quantized_gguf_name = f"{model_name.lower()}-{imatrix_q_method.lower()}-imat.gguf" if use_imatrix else f"{model_name.lower()}-{q_method.lower()}.gguf"
151
  quantized_gguf_path = quantized_gguf_name
152
 
 
167
  print("Repo created successfully!", new_repo_url)
168
 
169
  try:
170
+ card = ModelCard.load(model_id, token=oauth_token.token)
171
  except:
172
  card = ModelCard("")
173
  if card.data.tags is None:
 
200
  llama-server --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -c 2048
201
  ```
202
 
203
+ Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
204
+ Step 1: Clone llama.cpp from GitHub.
205
+ ```
206
+ git clone https://github.com/ggerganov/llama.cpp
207
+ ```
208
+ Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
209
+ ```
210
+ cd llama.cpp && LLAMA_CURL=1 make
211
+ ```
212
+ Step 3: Run inference through the main binary.
213
+ ```
214
+ ./llama-cli --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -p "The meaning to life and the universe is"
215
+ ```
216
+ or
217
+ ```
218
+ ./llama-server --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -c 2048
219
+ ```
220
  """
221
  )
222
  card.save(f"README.md")
223
 
224
  if split_model:
225
+ split_upload_model(quantized_gguf_path, new_repo_id, oauth_token, split_max_tensors, split_max_size)
226
  else:
227
  try:
228
  print(f"Uploading quantized model: {quantized_gguf_path}")
 
233
  )
234
  except Exception as e:
235
  raise Exception(f"Error uploading quantized model: {e}")
236
+
237
+ imatrix_path = "llama.cpp/imatrix.dat"
238
  if os.path.isfile(imatrix_path):
239
  try:
240
  print(f"Uploading imatrix.dat: {imatrix_path}")
 
263
  shutil.rmtree(model_name, ignore_errors=True)
264
  print("Folder cleaned up successfully!")
265
 
266
+ css="""/* Custom CSS to allow scrolling */
267
+ .gradio-container {overflow-y: auto;}
268
+ """
269
+ # Create Gradio interface
270
+ with gr.Blocks(css=css) as demo:
271
+ gr.Markdown("You must be logged in to use GGUF-my-repo.")
272
+ gr.LoginButton(min_width=250)
273
+
274
+ model_id = HuggingfaceHubSearch(
275
+ label="Hub Model ID",
276
+ placeholder="Search for model id on Huggingface",
277
+ search_type="model",
278
+ )
279
+
280
+ q_method = gr.Dropdown(
281
+ ["Q2_K", "Q3_K_S", "Q3_K_M", "Q3_K_L", "Q4_0", "Q4_K_S", "Q4_K_M", "Q5_0", "Q5_K_S", "Q5_K_M", "Q6_K", "Q8_0"],
282
+ label="Quantization Method",
283
+ info="GGML quantization type",
284
+ value="Q4_K_M",
285
+ filterable=False,
286
+ visible=True
 
 
 
 
 
287
  )
288
 
289
+ imatrix_q_method = gr.Dropdown(
290
+ ["IQ3_M", "IQ3_XXS", "Q4_K_M", "Q4_K_S", "IQ4_NL", "IQ4_XS", "Q5_K_M", "Q5_K_S"],
291
+ label="Imatrix Quantization Method",
292
+ info="GGML imatrix quants type",
293
+ value="IQ4_NL",
294
+ filterable=False,
295
+ visible=False
296
+ )
297
+
298
+ use_imatrix = gr.Checkbox(
299
+ value=False,
300
+ label="Use Imatrix Quantization",
301
+ info="Use importance matrix for quantization."
302
+ )
303
+
304
+ private_repo = gr.Checkbox(
305
+ value=False,
306
+ label="Private Repo",
307
+ info="Create a private repo under your username."
308
+ )
309
+
310
+ train_data_file = gr.File(
311
+ label="Training Data File",
312
+ file_types=["txt"],
313
+ visible=False
314
+ )
315
+
316
+ split_model = gr.Checkbox(
317
+ value=False,
318
+ label="Split Model",
319
+ info="Shard the model using gguf-split."
320
+ )
321
+
322
+ split_max_tensors = gr.Number(
323
+ value=256,
324
+ label="Max Tensors per File",
325
+ info="Maximum number of tensors per file when splitting model.",
326
+ visible=False
327
+ )
328
+
329
+ split_max_size = gr.Textbox(
330
+ label="Max File Size",
331
+ info="Maximum file size when splitting model (--split-max-size). May leave empty to use the default.",
332
+ visible=False
333
+ )
334
+
335
+ def update_visibility(use_imatrix):
336
+ return gr.update(visible=not use_imatrix), gr.update(visible=use_imatrix), gr.update(visible=use_imatrix)
337
+
338
+ use_imatrix.change(
339
+ fn=update_visibility,
340
+ inputs=use_imatrix,
341
+ outputs=[q_method, imatrix_q_method, train_data_file]
342
+ )
343
+
344
+ iface = gr.Interface(
345
+ fn=process_model,
346
+ inputs=[
347
+ model_id,
348
+ q_method,
349
+ use_imatrix,
350
+ imatrix_q_method,
351
+ private_repo,
352
+ train_data_file,
353
+ split_model,
354
+ split_max_tensors,
355
+ split_max_size,
356
+ ],
357
+ outputs=[
358
+ gr.Markdown(label="output"),
359
+ gr.Image(show_label=False),
360
+ ],
361
+ title="Create your own GGUF Quants, blazingly fast ⚡!",
362
+ description="The space takes an HF repo as an input, quantizes it and creates a Public repo containing the selected quant under your HF user namespace.",
363
+ api_name=False
364
+ )
365
+
366
+ def update_split_visibility(split_model):
367
+ return gr.update(visible=split_model), gr.update(visible=split_model)
368
+
369
+ split_model.change(
370
+ fn=update_split_visibility,
371
+ inputs=split_model,
372
+ outputs=[split_max_tensors, split_max_size]
373
+ )
374
+
375
+ def restart_space():
376
+ HfApi().restart_space(repo_id="ggml-org/gguf-my-repo", token=HF_TOKEN, factory_reboot=True)
377
+
378
+ scheduler = BackgroundScheduler()
379
+ scheduler.add_job(restart_space, "interval", seconds=21600)
380
+ scheduler.start()
381
+
382
+ # Launch the interface
383
+ demo.queue(default_concurrency_limit=1, max_size=5).launch(debug=True, show_api=False)