Spaces:
Runtime error
Runtime error
Ffftdtd5dtft
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -4,53 +4,70 @@ import subprocess
|
|
4 |
import signal
|
5 |
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
|
6 |
import gradio as gr
|
|
|
7 |
from huggingface_hub import create_repo, HfApi
|
8 |
from huggingface_hub import snapshot_download
|
9 |
from huggingface_hub import whoami
|
10 |
from huggingface_hub import ModelCard
|
|
|
11 |
from gradio_huggingfacehub_search import HuggingfaceHubSearch
|
|
|
12 |
from apscheduler.schedulers.background import BackgroundScheduler
|
|
|
13 |
from textwrap import dedent
|
14 |
|
15 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
16 |
|
17 |
def generate_importance_matrix(model_path, train_data_path):
|
18 |
imatrix_command = f"./llama-imatrix -m ../{model_path} -f {train_data_path} -ngl 99 --output-frequency 10"
|
|
|
19 |
os.chdir("llama.cpp")
|
|
|
20 |
print(f"Current working directory: {os.getcwd()}")
|
21 |
print(f"Files in the current directory: {os.listdir('.')}")
|
|
|
22 |
if not os.path.isfile(f"../{model_path}"):
|
23 |
raise Exception(f"Model file not found: {model_path}")
|
|
|
24 |
print("Running imatrix command...")
|
25 |
process = subprocess.Popen(imatrix_command, shell=True)
|
|
|
26 |
try:
|
27 |
-
process.wait(timeout=60)
|
28 |
except subprocess.TimeoutExpired:
|
29 |
print("Imatrix computation timed out. Sending SIGINT to allow graceful termination...")
|
30 |
process.send_signal(signal.SIGINT)
|
31 |
try:
|
32 |
-
process.wait(timeout=5)
|
33 |
except subprocess.TimeoutExpired:
|
34 |
print("Imatrix proc still didn't term. Forecfully terming process...")
|
35 |
process.kill()
|
|
|
36 |
os.chdir("..")
|
|
|
37 |
print("Importance matrix generation completed.")
|
38 |
|
39 |
def split_upload_model(model_path, repo_id, oauth_token: gr.OAuthToken | None, split_max_tensors=256, split_max_size=None):
|
40 |
if oauth_token.token is None:
|
41 |
raise ValueError("You have to be logged in.")
|
|
|
42 |
split_cmd = f"llama.cpp/llama-gguf-split --split --split-max-tensors {split_max_tensors}"
|
43 |
if split_max_size:
|
44 |
split_cmd += f" --split-max-size {split_max_size}"
|
45 |
-
split_cmd += f" {model_path} {
|
46 |
-
|
|
|
|
|
47 |
result = subprocess.run(split_cmd, shell=True, capture_output=True, text=True)
|
48 |
-
print(f"Split command stdout: {result.stdout}")
|
49 |
-
print(f"Split command stderr: {result.stderr}")
|
|
|
50 |
if result.returncode != 0:
|
51 |
raise Exception(f"Error splitting the model: {result.stderr}")
|
52 |
print("Model split successfully!")
|
53 |
-
|
|
|
|
|
54 |
if sharded_model_files:
|
55 |
print(f"Sharded model files: {sharded_model_files}")
|
56 |
api = HfApi(token=oauth_token.token)
|
@@ -67,45 +84,47 @@ def split_upload_model(model_path, repo_id, oauth_token: gr.OAuthToken | None, s
|
|
67 |
raise Exception(f"Error uploading file {file_path}: {e}")
|
68 |
else:
|
69 |
raise Exception("No sharded files found.")
|
|
|
70 |
print("Sharded model has been uploaded successfully!")
|
71 |
|
72 |
def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_repo, train_data_file, split_model, split_max_tensors, split_max_size, oauth_token: gr.OAuthToken | None):
|
73 |
if oauth_token.token is None:
|
74 |
raise ValueError("You must be logged in to use GGUF-my-repo")
|
75 |
model_name = model_id.split('/')[-1]
|
76 |
-
|
77 |
|
78 |
try:
|
79 |
api = HfApi(token=oauth_token.token)
|
80 |
|
81 |
-
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
api.snapshot_download(repo_id=model_id, local_dir=model_name, local_dir_use_symlinks=False, allow_patterns=dl_pattern)
|
84 |
print("Model downloaded successfully!")
|
85 |
print(f"Current working directory: {os.getcwd()}")
|
86 |
print(f"Model directory contents: {os.listdir(model_name)}")
|
87 |
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
raise FileNotFoundError(f"No supported model file found in the downloaded files. Supported formats: {', '.join(supported_extensions)}")
|
97 |
-
|
98 |
-
# If the model is not already in GGUF format, convert it
|
99 |
-
if not model_file.endswith(".gguf"):
|
100 |
-
gguf_model_file = f"{os.path.splitext(model_file)[0]}.gguf"
|
101 |
-
conversion_command = f"python llama.cpp/convert_hf_to_gguf.py {model_file} --outfile {gguf_model_file}"
|
102 |
-
result = subprocess.run(conversion_command, shell=True, capture_output=True)
|
103 |
-
if result.returncode != 0:
|
104 |
-
raise Exception(f"Error converting to GGUF: {result.stderr}")
|
105 |
-
print("Model converted to GGUF successfully!")
|
106 |
-
print(f"Converted model path: {gguf_model_file}")
|
107 |
-
else:
|
108 |
-
gguf_model_file = model_file # If already GGUF, use the original file
|
109 |
|
110 |
imatrix_path = "llama.cpp/imatrix.dat"
|
111 |
|
@@ -120,27 +139,23 @@ def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_rep
|
|
120 |
if not os.path.isfile(train_data_path):
|
121 |
raise Exception(f"Training data file not found: {train_data_path}")
|
122 |
|
123 |
-
generate_importance_matrix(
|
124 |
else:
|
125 |
print("Not using imatrix quantization.")
|
126 |
-
|
127 |
username = whoami(oauth_token.token)["name"]
|
128 |
quantized_gguf_name = f"{model_name.lower()}-{imatrix_q_method.lower()}-imat.gguf" if use_imatrix else f"{model_name.lower()}-{q_method.lower()}.gguf"
|
129 |
quantized_gguf_path = quantized_gguf_name
|
130 |
-
|
131 |
-
os.chdir("llama.cpp")
|
132 |
if use_imatrix:
|
133 |
-
quantise_ggml = f"./llama-quantize --imatrix {imatrix_path}
|
134 |
else:
|
135 |
-
quantise_ggml = f"./llama-quantize
|
136 |
result = subprocess.run(quantise_ggml, shell=True, capture_output=True)
|
137 |
-
os.chdir("..")
|
138 |
-
|
139 |
if result.returncode != 0:
|
140 |
raise Exception(f"Error quantizing: {result.stderr}")
|
141 |
print(f"Quantized successfully with {imatrix_q_method if use_imatrix else q_method} option!")
|
142 |
print(f"Quantized model path: {quantized_gguf_path}")
|
143 |
|
|
|
144 |
new_repo_url = api.create_repo(repo_id=f"{username}/{model_name}-{imatrix_q_method if use_imatrix else q_method}-GGUF", exist_ok=True, private=private_repo)
|
145 |
new_repo_id = new_repo_url.repo_id
|
146 |
print("Repo created successfully!", new_repo_url)
|
@@ -159,26 +174,26 @@ def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_rep
|
|
159 |
# {new_repo_id}
|
160 |
This model was converted to GGUF format from [`{model_id}`](https://huggingface.co/{model_id}) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
|
161 |
Refer to the [original model card](https://huggingface.co/{model_id}) for more details on the model.
|
162 |
-
|
163 |
## Use with llama.cpp
|
164 |
Install llama.cpp through brew (works on Mac and Linux)
|
165 |
-
|
166 |
```bash
|
167 |
brew install llama.cpp
|
168 |
-
|
169 |
```
|
170 |
Invoke the llama.cpp server or the CLI.
|
171 |
-
|
172 |
### CLI:
|
173 |
```bash
|
174 |
llama-cli --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -p "The meaning to life and the universe is"
|
175 |
```
|
176 |
-
|
177 |
### Server:
|
178 |
```bash
|
179 |
llama-server --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -c 2048
|
180 |
```
|
181 |
-
|
182 |
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
|
183 |
Step 1: Clone llama.cpp from GitHub.
|
184 |
```
|
@@ -192,7 +207,7 @@ def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_rep
|
|
192 |
```
|
193 |
./llama-cli --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -p "The meaning to life and the universe is"
|
194 |
```
|
195 |
-
or
|
196 |
```
|
197 |
./llama-server --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -c 2048
|
198 |
```
|
@@ -212,8 +227,10 @@ def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_rep
|
|
212 |
)
|
213 |
except Exception as e:
|
214 |
raise Exception(f"Error uploading quantized model: {e}")
|
215 |
-
|
216 |
-
|
|
|
|
|
217 |
try:
|
218 |
print(f"Uploading imatrix.dat: {imatrix_path}")
|
219 |
api.upload_file(
|
@@ -244,7 +261,8 @@ def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_rep
|
|
244 |
css="""/* Custom CSS to allow scrolling */
|
245 |
.gradio-container {overflow-y: auto;}
|
246 |
"""
|
247 |
-
|
|
|
248 |
gr.Markdown("You must be logged in to use GGUF-my-repo.")
|
249 |
gr.LoginButton(min_width=250)
|
250 |
|
@@ -267,7 +285,7 @@ with gr.Blocks(css=css) as demo:
|
|
267 |
["IQ3_M", "IQ3_XXS", "Q4_K_M", "Q4_K_S", "IQ4_NL", "IQ4_XS", "Q5_K_M", "Q5_K_S"],
|
268 |
label="Imatrix Quantization Method",
|
269 |
info="GGML imatrix quants type",
|
270 |
-
value="IQ4_NL",
|
271 |
filterable=False,
|
272 |
visible=False
|
273 |
)
|
@@ -311,7 +329,7 @@ with gr.Blocks(css=css) as demo:
|
|
311 |
|
312 |
def update_visibility(use_imatrix):
|
313 |
return gr.update(visible=not use_imatrix), gr.update(visible=use_imatrix), gr.update(visible=use_imatrix)
|
314 |
-
|
315 |
use_imatrix.change(
|
316 |
fn=update_visibility,
|
317 |
inputs=use_imatrix,
|
@@ -335,7 +353,7 @@ with gr.Blocks(css=css) as demo:
|
|
335 |
gr.Markdown(label="output"),
|
336 |
gr.Image(show_label=False),
|
337 |
],
|
338 |
-
title="Create your own GGUF Quants, blazingly fast
|
339 |
description="The space takes an HF repo as an input, quantizes it and creates a Public repo containing the selected quant under your HF user namespace.",
|
340 |
api_name=False
|
341 |
)
|
@@ -350,10 +368,11 @@ with gr.Blocks(css=css) as demo:
|
|
350 |
)
|
351 |
|
352 |
def restart_space():
|
353 |
-
HfApi().restart_space(repo_id="
|
354 |
|
355 |
scheduler = BackgroundScheduler()
|
356 |
scheduler.add_job(restart_space, "interval", seconds=21600)
|
357 |
scheduler.start()
|
358 |
|
359 |
-
|
|
|
|
4 |
import signal
|
5 |
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
|
6 |
import gradio as gr
|
7 |
+
|
8 |
from huggingface_hub import create_repo, HfApi
|
9 |
from huggingface_hub import snapshot_download
|
10 |
from huggingface_hub import whoami
|
11 |
from huggingface_hub import ModelCard
|
12 |
+
|
13 |
from gradio_huggingfacehub_search import HuggingfaceHubSearch
|
14 |
+
|
15 |
from apscheduler.schedulers.background import BackgroundScheduler
|
16 |
+
|
17 |
from textwrap import dedent
|
18 |
|
19 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
20 |
|
21 |
def generate_importance_matrix(model_path, train_data_path):
|
22 |
imatrix_command = f"./llama-imatrix -m ../{model_path} -f {train_data_path} -ngl 99 --output-frequency 10"
|
23 |
+
|
24 |
os.chdir("llama.cpp")
|
25 |
+
|
26 |
print(f"Current working directory: {os.getcwd()}")
|
27 |
print(f"Files in the current directory: {os.listdir('.')}")
|
28 |
+
|
29 |
if not os.path.isfile(f"../{model_path}"):
|
30 |
raise Exception(f"Model file not found: {model_path}")
|
31 |
+
|
32 |
print("Running imatrix command...")
|
33 |
process = subprocess.Popen(imatrix_command, shell=True)
|
34 |
+
|
35 |
try:
|
36 |
+
process.wait(timeout=60) # added wait
|
37 |
except subprocess.TimeoutExpired:
|
38 |
print("Imatrix computation timed out. Sending SIGINT to allow graceful termination...")
|
39 |
process.send_signal(signal.SIGINT)
|
40 |
try:
|
41 |
+
process.wait(timeout=5) # grace period
|
42 |
except subprocess.TimeoutExpired:
|
43 |
print("Imatrix proc still didn't term. Forecfully terming process...")
|
44 |
process.kill()
|
45 |
+
|
46 |
os.chdir("..")
|
47 |
+
|
48 |
print("Importance matrix generation completed.")
|
49 |
|
50 |
def split_upload_model(model_path, repo_id, oauth_token: gr.OAuthToken | None, split_max_tensors=256, split_max_size=None):
|
51 |
if oauth_token.token is None:
|
52 |
raise ValueError("You have to be logged in.")
|
53 |
+
|
54 |
split_cmd = f"llama.cpp/llama-gguf-split --split --split-max-tensors {split_max_tensors}"
|
55 |
if split_max_size:
|
56 |
split_cmd += f" --split-max-size {split_max_size}"
|
57 |
+
split_cmd += f" {model_path} {model_path.split('.')[0]}"
|
58 |
+
|
59 |
+
print(f"Split command: {split_cmd}")
|
60 |
+
|
61 |
result = subprocess.run(split_cmd, shell=True, capture_output=True, text=True)
|
62 |
+
print(f"Split command stdout: {result.stdout}")
|
63 |
+
print(f"Split command stderr: {result.stderr}")
|
64 |
+
|
65 |
if result.returncode != 0:
|
66 |
raise Exception(f"Error splitting the model: {result.stderr}")
|
67 |
print("Model split successfully!")
|
68 |
+
|
69 |
+
|
70 |
+
sharded_model_files = [f for f in os.listdir('.') if f.startswith(model_path.split('.')[0])]
|
71 |
if sharded_model_files:
|
72 |
print(f"Sharded model files: {sharded_model_files}")
|
73 |
api = HfApi(token=oauth_token.token)
|
|
|
84 |
raise Exception(f"Error uploading file {file_path}: {e}")
|
85 |
else:
|
86 |
raise Exception("No sharded files found.")
|
87 |
+
|
88 |
print("Sharded model has been uploaded successfully!")
|
89 |
|
90 |
def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_repo, train_data_file, split_model, split_max_tensors, split_max_size, oauth_token: gr.OAuthToken | None):
|
91 |
if oauth_token.token is None:
|
92 |
raise ValueError("You must be logged in to use GGUF-my-repo")
|
93 |
model_name = model_id.split('/')[-1]
|
94 |
+
fp16 = f"{model_name}.fp16.gguf"
|
95 |
|
96 |
try:
|
97 |
api = HfApi(token=oauth_token.token)
|
98 |
|
99 |
+
dl_pattern = ["*.md", "*.json", "*.model"]
|
100 |
+
|
101 |
+
pattern = (
|
102 |
+
"*.safetensors"
|
103 |
+
if any(
|
104 |
+
file.path.endswith(".safetensors")
|
105 |
+
for file in api.list_repo_tree(
|
106 |
+
repo_id=model_id,
|
107 |
+
recursive=True,
|
108 |
+
)
|
109 |
+
)
|
110 |
+
else "*.bin"
|
111 |
+
)
|
112 |
+
|
113 |
+
dl_pattern += pattern
|
114 |
+
|
115 |
api.snapshot_download(repo_id=model_id, local_dir=model_name, local_dir_use_symlinks=False, allow_patterns=dl_pattern)
|
116 |
print("Model downloaded successfully!")
|
117 |
print(f"Current working directory: {os.getcwd()}")
|
118 |
print(f"Model directory contents: {os.listdir(model_name)}")
|
119 |
|
120 |
+
conversion_script = "convert_hf_to_gguf.py"
|
121 |
+
fp16_conversion = f"python llama.cpp/{conversion_script} {model_name} --outtype f16 --outfile {fp16}"
|
122 |
+
result = subprocess.run(fp16_conversion, shell=True, capture_output=True)
|
123 |
+
print(result)
|
124 |
+
if result.returncode != 0:
|
125 |
+
raise Exception(f"Error converting to fp16: {result.stderr}")
|
126 |
+
print("Model converted to fp16 successfully!")
|
127 |
+
print(f"Converted model path: {fp16}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
|
129 |
imatrix_path = "llama.cpp/imatrix.dat"
|
130 |
|
|
|
139 |
if not os.path.isfile(train_data_path):
|
140 |
raise Exception(f"Training data file not found: {train_data_path}")
|
141 |
|
142 |
+
generate_importance_matrix(fp16, train_data_path)
|
143 |
else:
|
144 |
print("Not using imatrix quantization.")
|
|
|
145 |
username = whoami(oauth_token.token)["name"]
|
146 |
quantized_gguf_name = f"{model_name.lower()}-{imatrix_q_method.lower()}-imat.gguf" if use_imatrix else f"{model_name.lower()}-{q_method.lower()}.gguf"
|
147 |
quantized_gguf_path = quantized_gguf_name
|
|
|
|
|
148 |
if use_imatrix:
|
149 |
+
quantise_ggml = f"./llama.cpp/llama-quantize --imatrix {imatrix_path} {fp16} {quantized_gguf_path} {imatrix_q_method}"
|
150 |
else:
|
151 |
+
quantise_ggml = f"./llama.cpp/llama-quantize {fp16} {quantized_gguf_path} {q_method}"
|
152 |
result = subprocess.run(quantise_ggml, shell=True, capture_output=True)
|
|
|
|
|
153 |
if result.returncode != 0:
|
154 |
raise Exception(f"Error quantizing: {result.stderr}")
|
155 |
print(f"Quantized successfully with {imatrix_q_method if use_imatrix else q_method} option!")
|
156 |
print(f"Quantized model path: {quantized_gguf_path}")
|
157 |
|
158 |
+
# Create empty repo
|
159 |
new_repo_url = api.create_repo(repo_id=f"{username}/{model_name}-{imatrix_q_method if use_imatrix else q_method}-GGUF", exist_ok=True, private=private_repo)
|
160 |
new_repo_id = new_repo_url.repo_id
|
161 |
print("Repo created successfully!", new_repo_url)
|
|
|
174 |
# {new_repo_id}
|
175 |
This model was converted to GGUF format from [`{model_id}`](https://huggingface.co/{model_id}) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
|
176 |
Refer to the [original model card](https://huggingface.co/{model_id}) for more details on the model.
|
177 |
+
|
178 |
## Use with llama.cpp
|
179 |
Install llama.cpp through brew (works on Mac and Linux)
|
180 |
+
|
181 |
```bash
|
182 |
brew install llama.cpp
|
183 |
+
|
184 |
```
|
185 |
Invoke the llama.cpp server or the CLI.
|
186 |
+
|
187 |
### CLI:
|
188 |
```bash
|
189 |
llama-cli --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -p "The meaning to life and the universe is"
|
190 |
```
|
191 |
+
|
192 |
### Server:
|
193 |
```bash
|
194 |
llama-server --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -c 2048
|
195 |
```
|
196 |
+
|
197 |
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
|
198 |
Step 1: Clone llama.cpp from GitHub.
|
199 |
```
|
|
|
207 |
```
|
208 |
./llama-cli --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -p "The meaning to life and the universe is"
|
209 |
```
|
210 |
+
or
|
211 |
```
|
212 |
./llama-server --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -c 2048
|
213 |
```
|
|
|
227 |
)
|
228 |
except Exception as e:
|
229 |
raise Exception(f"Error uploading quantized model: {e}")
|
230 |
+
|
231 |
+
|
232 |
+
imatrix_path = "llama.cpp/imatrix.dat"
|
233 |
+
if os.path.isfile(imatrix_path):
|
234 |
try:
|
235 |
print(f"Uploading imatrix.dat: {imatrix_path}")
|
236 |
api.upload_file(
|
|
|
261 |
css="""/* Custom CSS to allow scrolling */
|
262 |
.gradio-container {overflow-y: auto;}
|
263 |
"""
|
264 |
+
# Create Gradio interface
|
265 |
+
with gr.Blocks(css=css) as demo:
|
266 |
gr.Markdown("You must be logged in to use GGUF-my-repo.")
|
267 |
gr.LoginButton(min_width=250)
|
268 |
|
|
|
285 |
["IQ3_M", "IQ3_XXS", "Q4_K_M", "Q4_K_S", "IQ4_NL", "IQ4_XS", "Q5_K_M", "Q5_K_S"],
|
286 |
label="Imatrix Quantization Method",
|
287 |
info="GGML imatrix quants type",
|
288 |
+
value="IQ4_NL",
|
289 |
filterable=False,
|
290 |
visible=False
|
291 |
)
|
|
|
329 |
|
330 |
def update_visibility(use_imatrix):
|
331 |
return gr.update(visible=not use_imatrix), gr.update(visible=use_imatrix), gr.update(visible=use_imatrix)
|
332 |
+
|
333 |
use_imatrix.change(
|
334 |
fn=update_visibility,
|
335 |
inputs=use_imatrix,
|
|
|
353 |
gr.Markdown(label="output"),
|
354 |
gr.Image(show_label=False),
|
355 |
],
|
356 |
+
title="Create your own GGUF Quants, blazingly fast ⚡!",
|
357 |
description="The space takes an HF repo as an input, quantizes it and creates a Public repo containing the selected quant under your HF user namespace.",
|
358 |
api_name=False
|
359 |
)
|
|
|
368 |
)
|
369 |
|
370 |
def restart_space():
|
371 |
+
HfApi().restart_space(repo_id="ggml-org/gguf-my-repo", token=HF_TOKEN, factory_reboot=True)
|
372 |
|
373 |
scheduler = BackgroundScheduler()
|
374 |
scheduler.add_job(restart_space, "interval", seconds=21600)
|
375 |
scheduler.start()
|
376 |
|
377 |
+
# Launch the interface
|
378 |
+
demo.queue(default_concurrency_limit=999, max_size=5).launch(debug=True, show_api=False)
|